Answer:
7.468 kN
Explanation:
Here the force is given in Newton
Some of the prefixes of the SI units are
kilo = 10³
Mega = 10⁶
Giga = 10⁹
Tera = 10¹²
The number is 7468.0
Here, the only solution where the number of significant figures is kilo. If any other prefix is chosen then the significant figures will increase.
1 kilonewton = 1000 Newton


So, 7468 N = 7.468 kN
Answer:
1,780,000 N
Explanation:
0.2 atm × (1.013×10⁵ Pa/atm) = 20,260 Pa
Force = pressure × area
F = 20,260 Pa × (3.89 m × 22.6 m)
F = 1,780,000 N
Answer:
N = 195 turns
Explanation:
The inductance of the inductor, L = 500 μH = 500 * 10⁻⁶H
The length of the tube, l = 12 cm = 0.12 m
The diameter of the tube, d = 4 cm = 0.04 m
Radius, r = 0.04/2 = 0.02 m
Area of the tube, A = πr² = 0.02²π = 0.0004π m²

The inductance of a solenoid is given by:


Rolling friction .<span> the force that slows down the movement of a rolling object</span>
sliding friction.
Sliding friction : The opposing force that comes into play when
one body is actually sliding over the surface of the other body
is called sliding friction. e.g. A flat block is moving over a
horizontal table.
Kinetic or dynamic friction: If the applied force is increased further
and sets the body in motion, the friction opposing the motion is called
kinetic friction
Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k