Question:
How could you use a model to show the cause-and-effect relationship between Earth's rotation and the apparent motion of the stars across the night sky?
Answer:
Gravity? or density because of the pull from the sun.
Theoretical Yield is an Ideal yield with 100 % conversion of reactant to product. It is in fact a paper work.
While,
Actual Yield is the yield which is obtained experimentally. It is always less than theoretical yield because it is not possible to have 100% conversion of reactants into products. Even some amount of product is lost while handling it during the process.
Percentage Yield is Calculated as,
%age Yield = Actual Yield / Theoretical Yield × 100
Data Given:
Actual Yield = 0.104 g
Theoretical Yield = 0.110 g
Putting Values,
%age Yield = 0.104 g / 0.110 g × 100
%age Yield = 94.54 %
<em>ANSWER - 6 MOLES OF </em><em>IRON</em>
Fe2O3(s) + 3H2(g) → 2Fe(s) + 3H2O(1)
One moles of Fe2O3 forming 2 moles of Fe
3 moles of Fe2O3 will form 2×3 = 6 moles of iron
Answer:
The concentration of the analyte is determined by fitting the absorbance or transmittance obtained by spectrophotometric analysis of the unknown solution into the calibration curve.
Explanation:
In a calibration curve, the instrumental response (absorbance or transmittance), is plotted against the concentration of the analyte (the substance to be measured). The analyst is expected to prepare a series of standard solutions of the analyte within a range of solution concentrations close to the expected concentration of analyte in the unknown solution. The method of least squares may be used to determine the best fit of the line, thus, the concentration of the analyte. This method is only used for the determination of the concentration of coloured substances (spectrophotometry).
Answer:
1.5 moles
Explanation:
To find the number of moles of HCl in 500 mL of a 3 M solution of HCl, we consider moles in 1 liter/ 1000 mL.
3 moles HCl is contained in 1000 mL
x moles is HCl is contained in 500 mL

Hence the number of moles of HCl in 500 mL is 1.5 moles.