Answer:
255.51cm3
Explanation:
Data obtained from the question include:
V1 (initial volume) =?
T1 (initial temperature) = 50°C = 50 + 273 = 323K
T2 (final temperature) = - 5°C = - 5 + 237 = 268K
V2 (final volume) = 212cm3
Using the Charles' law equation V1/T1 = V2/T2, the initial volume of the gas can be obtained as follow:
V1/T1 = V2/T2
V1/323 = 212/268
Cross multiply to express in linear form
V1 x 268 = 323 x 212
Divide both side by 268
V1 = (323 x 212)/268
V1 = 255.51cm3
Therefore, the initial volume of the gas is 255.51cm3
They both have 1 electron in their valence shell.....
Explanation:
The <u>First Law of Thermodynamics</u> states that energy cannot be created or destroyed in an isolated system. In other words, energy can be converted from one form into another, but it cannot be created nor destroyed.
<u>Conduction</u> is the transfer of energy from one molecule to another by direct contact. This transfer occurs when molecules hit against each other, which can take place in solids, liquids, and gases.
When you put your cold hands under your legs to warm your hands up, the heat energy from your legs is being transferred to your hands through conduction. However, since energy cannot be created, there is no extra heat energy that can instantaneously replace the heat created by your legs.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct place to click on any of the double peak showing between 2500 and 3000
on the uploaded question
Explanation:
The group which is being highlighted is an Aldehyde functional group denoted by this structure (
)
This groups stretch on the infrared spectrometer gives two medium intensities peaks
Its stretch comes at 2820 - 2850
peak 1
and at 2720 - 2750
peak 2
So the correct click would be on any of the two peaks between 2500 - 3000
region