Answer:
Explanation:
mass, m = 1 kg
Position (2, 3 ) m
height, h = 2 m
acceleration due to gravity, g = 9.8 m/s^2
Here, no force is acting in horizontal direction, the force of gravity is acting in vertical direction, so the work done by the gravitational force is to be calculated.
Force mass x acceleration due to gravity
F = 1 x 9.8 = 9.8 N
Work = force x displacement x CosФ
Where, Ф be the angle between force vector and the displacement vector.
Here the value of Ф is 180° as the force acting vertically downward and the displacement is upward
So, W = 9.8 x 2 x Cos 180°
W = - 19.6 J
Thus, option (A) is correct.
Answer: 15 cm
Explanation:
According to the Lens Equation we have the following:
(1)
Where:
is the focal length
is the distance between the candle (the object) and the lens
is the distance between the image and the lens
Isolating
:
(2)
Solving:
(3)
Finally:
This is where the image is located
Answer:
The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.
Explanation:

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer: The answer is C.) 25 m/s^2.
Explanation: If you input 5 as s, you would have to use the exponent 2. This means that you have to multiply 5 by 5. 5 x 5= 25.
Edit: Also, because the surface is frictionless, it will make the object go faster too. Nothing can really slow it down unless something blocks it.