Answer:
Explanation:
The bead is moving on a vertical circular path so it must have a centripetal force towards the centre.
This force is equal to m v² / r
v is velocity of bead and r is radius of the circular path.
The vertical hoop is also rotating about a vertical axis passing through the centre at frequency f so the bead will experience a cetrifugal force due to rotation of the hoop. Its value is
m ω² r . Only at the point o degree and 180 degree , these forces are opposite to each other so at these points , the bead will be in equilibrium .
mv² / r = m ω² r
v² = ω² r²
v = ω r
= 2π f r
= 2 x 3.14 x 2 x 0.22
v = 2.76 m /s
For the bead to rise upto point θ = 90 degree , height achieved is radius R
required velocity = √ 2gR
= √ 2x 9.8x.22
= 2.076 m/s
This velocity is less than the velocity calculated earlier so the bead will be able to ride the required height.
v = 2.76 m/s
Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
The correct answer that would best complete the given statement above would be the last option: COLDER. Climates on Earth get colder <span>as you move from the equator to the poles. The places that are located near or on the equator experience the warmest or the hottest climates such as Africa. Hope this answer helps. </span>
Answer:
The water acts like a lubricant therefore has a smooth motion over the ice.
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1