Answer:
<u>ω = 1.7 rad/s</u>
Explanation:
Conservation of angular momentum
Assuming the rod is initially hanging vertically at rest.
Initial angular momentum is carried by the bullet only
L = Iω = (mR²)(v/R) = mvR = 0.020(200)(0.7) = 2.8 kg•m²/s
the same angular momentum exists after impact, only the moment of inertia has increased by that of the rod. I = ⅓mR²
2.8 = (⅓(10)(0.7²) + 0.020(0.7²))ω
2.8 = (1.64313333...)ω
ω = 1.70406134...
Answer:
Q=mc(T2-T1)
Explanation:
Ti is the temperature
m is mass
c is specific heat capacity for steam
Q is heat, [Q]=J
Answer:
16.53 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 18.0 m/s.
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
The maximum height reached by the ball can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 18² – (2 × 9.8 × h)
0 = 324 – 19.6h
Rearrange
19.6h = 324
Divide both side by 19.6
h = 324 / 19.6
h = 16.53 m
Therefore, the maximum height reached by the ball is 16.53 m