1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
14

A steady, incompressible, two-dimensional velocity field is given by the following components in the x-y plane: u=1.85+2.05x+0.6

56y v=0.754−2.18x−2.05y . Calculate the acceleration field (find expressions for acceleration components ax and ay), and calculate the acceleration at the point (x,y) = (-1, 5).
Engineering
1 answer:
amm18123 years ago
4 0

1) a_x=4.287+2.772x\\a_y=-5.579+2.772y

2) 8.418

Explanation:

1)

The two components of the velocity field in x and y for the field in this problem are:

u=1.85+2.05x+0.656y

v=0.754-2.18x-2.05y

The x-component and y-component of the acceleration field can be found using the following equations:

a_x=\frac{du}{dt}+u\frac{du}{dx}+v\frac{du}{dy}

a_y=\frac{dv}{dt}+u\frac{dv}{dx}+v\frac{dv}{dy}

The derivatives in this problem are:

\frac{du}{dt}=0

\frac{dv}{dt}=0

\frac{du}{dx}=2.05

\frac{du}{dy}=0.656

\frac{dv}{dx}=-2.18

\frac{dv}{dy}=-2.05

Substituting, we find:

a_x=0+(1.85+2.05x+0.656y)(2.05)+(0.754-2.18x-2.05y)(0.656)=\\a_x=4.287+2.772x

And

a_y=0+(1.85+2.05x+0.656y)(-2.18)+(0.754-2.18x-2.05y)(-2.05)=\\a_y=-5.579+2.772y

2)

In this part of the problem, we want to find the acceleration at the point

(x,y) = (-1,5)

So we have

x = -1

y = 5

First of all, we substitute these values of x and y into the expression for the components of the acceleration field:

a_x=4.287+2.772x\\a_y=-5.579+2.772y

And so we find:

a_x=4.287+2.772(-1)=1.515\\a_y=-5.579+2.772(5)=8.281

And finally, we find the magnitude of the acceleration simply by applying Pythagorean's theorem:

a=\sqrt{a_x^2+a_y^2}=\sqrt{1.515^2+8.281^2}=8.418

You might be interested in
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
3 years ago
We have a tube with a diameter of 5 inches that is 1 foot long. The tube then reduces the diameter to 3 inches. According to the
Ksju [112]
Can I get a picture? Of the question so I can understand it more?
6 0
2 years ago
Read 2 more answers
How large a force is required to accelerate a 1300 kg car from rest to a speed of 20 m/s in a distance of 80 m?
topjm [15]

F=m*a

F=80*20

F =1600 ans"

7 0
3 years ago
Read 2 more answers
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water. If the base is in the surface of water,
Scorpion4ik [409]

Answer:

Hydrostatic force = 41168 N

Explanation:

Complete question

A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water  so that the top is 4 ft below the surface. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)

Let "x" be the side length submerged in water.

Then

w(x)/base = (4+3-x)/altitude

w(x)/5 = (4+3-x)/3

w(x) = 5* (7-x)/3

Hydrostatic force = 62.5 integration of  x * 4 * (10-x)/3 with limits from 4 to 7

HF = integration of 40x - 4x^2/3

HF = 20x^2 - 4x^3/9 with limit 4 to 7

HF = (20*7^2 - 4*7^(3/9))- (20*4^2 - 4*4^(3/9))

HF = 658.69 N *62.5 = 41168 N

4 0
3 years ago
Other questions:
  • A reversible refrigerator operates between a low temperature reservoir at TL and a high temperature reservoir at TH . Its coeffi
    12·1 answer
  • The uniform dresser has a weight of 90 lb and rests on a tile floor for which the coefficient of static friction is 0.25. If the
    6·1 answer
  • Unwanted resistance is being discussed.
    12·1 answer
  • Help pls I don’t understand the question.
    9·1 answer
  • Question 3 (5 points)
    7·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • WARNING:<br><br> when people put links in the answer it is a virus DO NOT DOWNLOAD IT
    15·2 answers
  • Once you get the answer correct first i will mark you brainliest!!
    15·2 answers
  • Should i show my face?
    8·2 answers
  • For a small company it's usually best to keep the corporate and brand image as___ as possible​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!