1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
14

Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag

e of the load is 440 V. Use the line-to-line load voltage as your angle reference. (a) Draw the per-phase equivalent and label all the components. (b) Calculate the a-phase load current. (c) Calculate the capacitive reactive power per phase needed to correct the power factor to 0.8 lagging (d) Draw two power triangles - before and after the power factor correction in (c).

Engineering
1 answer:
elena55 [62]3 years ago
5 0

Given Information:

three-phase Y-connected load = P = 200 kW

PF = 0.707 lagging

line-to-line load voltage = VL-L = 440 V

Required Information:

(a) Draw the per-phase equivalent circuit ?

(b) Calculate the a-phase load current = ?

(c) Calculate the capacitive reactive power = ?

(d) Power triangles - before and after the power factor correction = ?

Answer:

a) See attached drawing  

b) I = 123.72<-45°

c) Qc = 16.66 kVAR

d) See attached drawing

Explanation:

b) Calculate the a-phase load current

VL-N = VL-L/\sqrt{3} = 440/\sqrt{3} = 254 V

Three phase load current can be found by

P = 3*VL-N*I*cos(θ)

θ = cos⁻¹(PF) = cos⁻¹(0.707) = 45°

I = P/3*VL-N*cos(45°)

I = 200,000/3*254*cos(45°)

I = 371.18 A

single phase current is

I = 371.18/3 = 123.72 A

In polar form,

I = 123.72<-45° A ( minus sign due to lagging PF)

Since the load is balanced, the current in other phases is same with 120° phase shift

(c) Calculate the capacitive reactive power

Three phase reactive compensation power is

Qc = P (tan(θold) - tan(θnew))

θnew = cos⁻¹(PF) = cos⁻¹(0.8) = 36.86°

Qc = 200 (tan(45°) - tan(36.86°))

Qc = 200 (0.250)

Qc = 50 kVAR

Per phase reactive compensation power is

Qc = 50/3 = 16.66 kVAR

(d) Power triangles - before and after the power factor correction

Before

P = 200 kW

Q =  3*VL-N*I*sin(45° ) = 3*254*123.72*sin(45° ) = 66.66 kVAR

S = P + jQ = 200 + j66.66 kVA = 210.81 kVA

After

I = P/3*VL-N*cos(36.86°) = 200,000/3*254*cos(36.86°) = 328 < -36.86 A

single phase current

I = 328/3 = 109.33 < -36.86 A

Q = 3*VL-N*I*sin(36.86° ) = 3*254*109.33*sin(36.86° ) = 50 kVAR

S = P + jQ = 200 + j50 kVA = 206 kVA

As you can see the current and reactive power are reduced after power factor correction.

The power triangle before and after power factor correction is attached.

You might be interested in
A 35kg block of mass is subjected to forces F1=100N and F2=75N at agive angle thetha= 20° and 35° respectively.find the distance
Talja [164]

Answer:

21 m

Explanation:

Since F₁ = 100 N and acts at an angle of 20° to the horizontal, it has horizontal component F₁' = 100cos20° = 93.97 N and vertical component F₁" = 100sin20° = 34.2 N.

Also, F₂ = 75 N and acts at an angle of -35° to the horizontal, it has horizontal component F₂' = 75cos(-35°) = 75cos35° = 61.44 N and vertical component F₂" = 75sin(-35°) = -75sin35° = -43.02 N

The resultant horizontal force F₃' = F₁' + F₂' = 93.97 N + 61.44 N = 155.41 N

The resultant vertical force F₃" = F₁" + F₂" = 34.2 N - 43.02 N = -8.82 N

If f is the frictional force on the block, the net horizontal force on the block is F = F₃' - f.

Since f = μN where μ = coefficient of kinetic friction = 0.4 and N = normal force on the block.

For the block to be in contact with the surface, the vertical forces on the block must balance.

Since the normal force, N must equal the resultant vertical force F₃" and the weight, W = mg of the object for a zero net vertical force,

N = mg + F₃" (since both the weight and the resultant vertical force act downwards)

N = mg + F₃"

Since m = mass of block = 35 kg and g = acceleration due to gravity = 9.8 m/s² and F₃" = 8.82 N

So,

N = mg + F₃"

N = 35 kg × 9.8 m/s² + 8.82 N

N = 343 N + 8.82 N

N = 351.82 N

So, the net horizontal force F = F₃' - f.

F = 155.41 N - 0.4 × 351.82 N

F = 155.41 N - 140.728 N

F = 14.682 N

Since F = ma, where a = acceleration of block,

a = F/m = 14.682 N/35 kg = 0.42 m/s²

To find the distance the block moved, x we use the equation

x = ut + 1/2at² where u = initial speed of block = 0 m/s, t = time = 10 s and a = acceleration of block = 0.42 m/s²

Substituting the values of the variables into the equation, we have

x = ut + 1/2at²

x = 0 m/s × 10 s + 1/2 × 0.42 m/s² × (10 s)²

x = 0 m + 1/2 × 0.42 m/s² × 100 s²

x = 0.21 m/s² × 100 s²

x = 21 m

So, the distance moved by the block is 21 m.

4 0
3 years ago
Convert mechanical energy into electric energy. What can he use?
Nina [5.8K]

Answer:

<h2>Generator </h2>

Explanation:

A generator converts mechanical energy into electrical energy

7 0
3 years ago
Georgia Tech is committed to creating solutions to some of the world’s most pressing challenges. Tell us how you have improved o
Kaylis [27]

Answer:

Georgia Tech is committed to WGAR 53566 THE ANSWER IS JELLY IS KING AND THE JELLY IS KING AND  hope to improve the human condition in your community.

Explanation:

6 0
3 years ago
Working with which of these systems requires a technician that has been certified in an EPA-approved course?
makvit [3.9K]

EPA Regulations provides a certified course for the technicians involved in the Air-conditioning system.

Answer: Option (b)

<u>Explanation:</u>

The EPA regulation has implemented an act called the "Clean Air Act" under the "section of 609".

This act provides some basic requirements for EPA Regulation such as follows;

  • Refrigerant: This unit must be approved by EPA Regulations before being implemented into the atmosphere.
  • Servicing: This system provides a certified course for technicians in service and also approve them with proper refrigerant equipment.
  • Reuse Refrigerants: The use of recycled refrigerants must be properly monitored before it comes in to serve.
6 0
3 years ago
What is the best countermeasure against social engineering?
Mkey [24]

Answer:

Hello Monk7294!

Answer:

Employee education

Explanation:

The most important countermeasure for social engineering is employee education. All the employees should be trained to keep confidential data safe. As a part of security education, organizations have to provide timely orientation about their security policy to new employees. The security policy should address the consequences of the breaches.

<em>- I Hope this helps Have an awesome day!</em>

<em>~ Chloe marcus <3</em>

3 0
2 years ago
Other questions:
  • 1. Copy the file Pay.java (see Code Listing 1.1) from the Student CD or as directed by your instructor. 2. Open the file in your
    10·1 answer
  • What Degree Do You Need To Become a Solar Engineer?<br> (2 or more sentences please)
    13·1 answer
  • A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric curren
    15·1 answer
  • As an employee, who's is supposed to provide training on the chemicals you are handling or come in contact with at work?
    14·2 answers
  • You are given that kc = 10-1 kg eq-1 min-1, ku = 10-3 kg2 eq-2 min-1 and [A]0 = 10 eq kg-1, where kc is the rate constant for a
    15·1 answer
  • What is the horizontal distance from Point A to toe of slope?
    12·1 answer
  • A 5 m deep deposit of sand and silt containing organic layers is to be compacted using explosives placed in the boreholes locate
    13·1 answer
  • Why are Gas cars Bad?(cons) give me reasons why gasoline cars are bad<br><br>Thx if u help ​
    14·1 answer
  • What are difference between conic sectional and solids?
    15·1 answer
  • ) If the blood viscosity is 2.7x10-3 Pa.s, length of the blood vessel is 1 m, radius of the blood vessel is 1 mm, calculate the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!