1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
14

Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag

e of the load is 440 V. Use the line-to-line load voltage as your angle reference. (a) Draw the per-phase equivalent and label all the components. (b) Calculate the a-phase load current. (c) Calculate the capacitive reactive power per phase needed to correct the power factor to 0.8 lagging (d) Draw two power triangles - before and after the power factor correction in (c).

Engineering
1 answer:
elena55 [62]3 years ago
5 0

Given Information:

three-phase Y-connected load = P = 200 kW

PF = 0.707 lagging

line-to-line load voltage = VL-L = 440 V

Required Information:

(a) Draw the per-phase equivalent circuit ?

(b) Calculate the a-phase load current = ?

(c) Calculate the capacitive reactive power = ?

(d) Power triangles - before and after the power factor correction = ?

Answer:

a) See attached drawing  

b) I = 123.72<-45°

c) Qc = 16.66 kVAR

d) See attached drawing

Explanation:

b) Calculate the a-phase load current

VL-N = VL-L/\sqrt{3} = 440/\sqrt{3} = 254 V

Three phase load current can be found by

P = 3*VL-N*I*cos(θ)

θ = cos⁻¹(PF) = cos⁻¹(0.707) = 45°

I = P/3*VL-N*cos(45°)

I = 200,000/3*254*cos(45°)

I = 371.18 A

single phase current is

I = 371.18/3 = 123.72 A

In polar form,

I = 123.72<-45° A ( minus sign due to lagging PF)

Since the load is balanced, the current in other phases is same with 120° phase shift

(c) Calculate the capacitive reactive power

Three phase reactive compensation power is

Qc = P (tan(θold) - tan(θnew))

θnew = cos⁻¹(PF) = cos⁻¹(0.8) = 36.86°

Qc = 200 (tan(45°) - tan(36.86°))

Qc = 200 (0.250)

Qc = 50 kVAR

Per phase reactive compensation power is

Qc = 50/3 = 16.66 kVAR

(d) Power triangles - before and after the power factor correction

Before

P = 200 kW

Q =  3*VL-N*I*sin(45° ) = 3*254*123.72*sin(45° ) = 66.66 kVAR

S = P + jQ = 200 + j66.66 kVA = 210.81 kVA

After

I = P/3*VL-N*cos(36.86°) = 200,000/3*254*cos(36.86°) = 328 < -36.86 A

single phase current

I = 328/3 = 109.33 < -36.86 A

Q = 3*VL-N*I*sin(36.86° ) = 3*254*109.33*sin(36.86° ) = 50 kVAR

S = P + jQ = 200 + j50 kVA = 206 kVA

As you can see the current and reactive power are reduced after power factor correction.

The power triangle before and after power factor correction is attached.

You might be interested in
The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam
lisabon 2012 [21]

Answer:

Explanation:

In an equilateral trinagle the center of mass is at 1/3 of the height and horizontally centered.

We can consider that the weigth applies a torque of T = W*b/2 on the right corner, being W the weight and b the base of the triangle.

The weigth depends on the size and specific gravity.

W = 1/2 * b * h * L * SG

Then

Teq = 1/2 * b * h * L * SG * b / 2

Teq = 1/4 * b^2 * h * L * SG

The water would apply a torque of elements of pressure integrated over the area and multiplied by the height at which they are apllied:

T1 = \int\limits^h_0 {p(y) * sin(30) * L * (h-y)} \, dy

The term sin(30) is because of the slope of the wall

The pressure of water is:

p(y) = SGw * (h - y)

Then:

T1 = \int\limits^h_0 {SGw * (h-y) * sin(30) * L * (h-y)} \, dy

T1 = \int\limits^h_0 {SGw * sin(30) * L * (h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {h^2 - 2*h*y + y^2} \, dy

T1 = SGw * sin(30) * L * (h^2*y - h*y^2 + 1/3*y^3)(evaluated between 0 and h)

T1 = SGw * sin(30) * L * (h^2*h - h*h^2 + 1/3*h^3)

T1 = SGw * sin(30) * L * (h^3 - h^3 + 1/3*h^3)

T1 = 1/3 * SGw * sin(30) * L * h^3

To remain stable the equilibrant torque (Teq) must be of larger magnitude than the water pressure torque (T1)

1/4 * b^2 * h * L * SG > 1/3 * SGw * sin(30) * L * h^3

In an equilateral triangle h = b * cos(30)

1/4 * b^3 * cos(30) * L * SG  > 1/3 * SGw * sin(30) * L * b^3 * (cos(30))^3

SG > SGw * 4/3* sin(30) * (cos(30))^2

SG > 1/2 * SGw

For the dam to hold, it should have a specific gravity of at leas half the specific gravity of water.

This is avergae specific gravity, including holes.

6 0
3 years ago
For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
bogdanovich [222]

Answer:

a)W=12.62 kJ/mol

b)W=12.59 kJ/mol

Explanation:

At T = 100 °C the second and third virial coefficients are

B = -242.5 cm^3 mol^-1

C = 25200 cm^6  mo1^-2

Now according isothermal work of one mole methyl gas is

W=-\int\limits^a_b {P} \, dV

a=v_2\\

b=v_1

from virial equation  

\frac{PV}{RT}=z=1+\frac{B}{V}+\frac{C}{V^2}\\   \\P=RT(1+\frac{B}{V} +\frac{C}{V^2})\frac{1}{V}\\

And  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=v_2\\

b=v_1

Now calculate V1 and V2 at given condition

\frac{P1V1}{RT} = 1+\frac{B}{v_1} +\frac{C}{v_1^2}

Substitute given values P_1\\ = 1 x 10^5 , T = 373.15 and given values of coefficients we get  

10^5(v_1)/8.314*373.15=1-242.5/v_1+25200/v_1^2

Solve for V1 by iterative or alternative cubic equation solver we get

v_1=30780 cm^3/mol

Similarly solve for state 2 at P2 = 50 bar we get  

v_1=241.33 cm^3/mol

Now  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=241.33

b=30780

After performing integration we get work done on the system is  

W=12.62 kJ/mol

(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get  

         dV=RT(-1/p^2+0+C')dP

Hence work done on the system is  

W=-\int\limits^a_b {P(RT(-1/p^2+0+C')} \, dP

a=v_2\\

b=v_1

by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work  

W=12.59 kJ/mol

The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series  

8 0
3 years ago
You are asked by your college crew to estimate the skin friction drag in their eight-seat racing shell. The hull of the shell ma
Fynjy0 [20]

Answer:

The total skin friction drag on the hull under these conditions is 276N

Explanation:

In this question, we are asked to determine the total skin friction drag on the hull under the given conditions.

Please check attachment for complete solution and step by step explanation

7 0
3 years ago
A woodcutter wishes to cause the tree trunk to fall uphill, even though the trunk is leaning downhill. With the aid of the winch
Sedbober [7]

Answer:

The correct answer will be "400.4 N". The further explanation is given below.

Explanation:

The given values are:

Mass of truck,

m = 600 kg

g = 9.8 m/s²

On equating torques at the point O,

⇒  T\times Cos(10+5)\times (1.3+4)=mg\times Sin(5)\times 4

So that,

On putting the values, we get

⇒  T\times Cos(15^{\circ})\times 5.3=600\times 9.8\times Sin(5^{\circ})\times 4

⇒                             T=400.4 \ N

8 0
3 years ago
What is the impedance of a 5μF capacitor at a frequency of 500Hz? What is the impedance of a60mH inductor at this frequency?
choli [55]

Answer:

1) 63.66 ohm

2) 188.49 ohm

Explanation:

Data provided in the question:

Part 1

Capacitance, C = 5μF = 5 × 10⁻⁶ F

Frequency = 500 Hz

Now,

Impedance = \frac{1}{2\times\pi\times f\times C}

or

Impedance = \frac{1}{2\times\pi\times500\times5\times10^{-6}}

or

Impedance = 63.66 ohm

Part 2

Inductance = 60 mH = 60 × 10⁻³ H

Frequency = 500 Hz

Now,

Impedance for an inductor = 2πfL

thus,

Impedance = 2 × π × 500 × 60 × 10⁻³

= 188.49 ohm

4 0
3 years ago
Other questions:
  • Please read
    6·1 answer
  • If the contact surface between the 20-kg block and the ground is smooth, determine the power of force F when t = 4 s. Initially,
    14·1 answer
  • An adiabatic air compressor is to be powered by a direct coupled adiabatic steam turbine that is also driving a generator. Steam
    10·1 answer
  • Find vC(t) for t ≥ 0 (in V), assuming the switch was open for a long time when closed at t = 0.
    14·1 answer
  • Where has the process of nuclear fusion been occurring for over four billion years
    6·1 answer
  • 35 points and brainiest is it A, B, C, D
    10·2 answers
  • A skull and crossbones pictogram indicates this kind of information about a chemical.
    14·1 answer
  • How many times greater is the value of the 2 of the 270413 than the valuce of the 2 in 419427?
    8·1 answer
  • A 250-pound person would use a Type 1 ladder even if he were carrying a load with him. true or false
    5·1 answer
  • joe is an exceptional systems engineer who hopes to work at the techtonic group. he is handicapped and uses a wheelchair. techto
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!