Answer:
Explanation:
Range of projectile R = 20 m
formula of range
R = u² sin2θ / g
u is initial velocity , θ is angle of projectile
putting the values
20 = u² sin2x 40 / 9.8
u² = 199
u = 14.10 m /s
At the initial point
vertical component of u
= u sin40 = 14.1 x sin 40
= 9.06 m/s
Horizontal component
= u cos 30
At the final point where the ball strikes the ground after falling , its speed remains the same as that in the beginning .
Horizontal component of velocity
u cos 30
Vertical component
= - u sin 30
= - 9.06 m /s
So its horizontal component remains unchanged .
change in vertical component = 9.06 - ( - 9.06 )
= 18.12 m /s
change in momentum
mass x change in velocity
= .050 x 18.12
= .906 N.s
Impulse = change in momentum
= .906 N.s .
Responder:
20.3 ° C
Explicación:
<u>Según la ley de Charles</u>: <em>cuando la presión sobre una muestra de gas seco se mantiene constante, la temperatura y el volumen estarán en proporción directa.
</em>
Paso uno:
datos dados
Temperatura T1 = 20 ° C
Temperatura T2 =?
Volumen V1 = 12.2 cm ^ 3
Volumen V2 = 12.4 cm ^ 3
Aplicar la relación temperatura y volumen

sustituyendo tenemos

Cruz multiplicar tenemos

Temperatura delle braci 20.3°C
Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
Light is a form of energy.
(:
gawaingnpang nkabuhayan, hamon at oportinidad