1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
3 years ago
7

An oil droplet is levitated and held at rest in a region where the electric field is 1.4x104 N/C directed vertically downwards.

If the droplet has 3 excess electrons attached, what is its mass
Physics
1 answer:
Ratling [72]3 years ago
8 0

W = m g     weight of drop

W = q E

m = q E / g = = 3 e E / g

m = 3 * 1.6E-19 * 1.4E4 / 9.8 = 6.96E-16 kg

You might be interested in
Estimate the magnitude of the electric field due to the proton in a hydrogen atom at a distance of
Lana71 [14]

Electric field due to a point charge is given as

E = \frac{kq}{r^2}

here we know that

q = 1.6 \times 10^{-19} C

also the distance is given as

r = 5.29 \times 10^{-11} m

now we will have

E = \frac{(9\times 10^9)(1.6 \times 10^{-19})}{(5.29 \times 10^{-11})^2}

so we will have

E = 5.14 \times 10^{11} N/C

so above is the electric field due to proton

5 0
3 years ago
Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 13
svet-max [94.6K]

Answer:

5945.27 W per meter of tube length.

Explanation:

Let's assume that:

  • Steady operations exist;
  • The heat transfer coefficient (h) is uniform over the entire fin surfaces;
  • Thermal conductivity (k) is constant;
  • Heat transfer by radiation is negligible.

First, let's calculate the heat transfer (Q) that occurs when there's no fin in the tubes. The heat will be transferred by convection, so let's use Newton's law of cooling:

Q = A*h*(Tb - T∞)

A is the area of the section of the tube,

A = π*D*L, where D is the diameter (5 cm = 0.05 m), and L is the length. The question wants the heat by length, thus, L= 1m.

A = π*0.05*1 = 0.1571 m²

Q = 0.1571*40*(130 - 25)

Q = 659.73 W

Now, when the fin is added, the heat will be transferred by the fin by convection, and between the fin and the tube by convection, thus:

Qfin = nf*Afin*h*(Tb - T∞)

Afin = 2π*(r2² - r1²) + 2π*r2*t

r2 is the outer radius of the fin (3 cm = 0.03 m), r1 is the radius difference of the fin and the tube ( 0.03 - 0.025 = 0.005 m), and t is the thickness ( 0.001 m).

Afin = 0.006 m²

Qfin = 0.97*0.006*40*(130 - 25)

Qfin = 24.44 W

The heat transferred at the space between the fin and the tube will be:

Qspace = Aspace*h*(Tb - T∞)

Aspace = π*D*S, where D is the tube diameter and S is the space between then,

Aspace = π*0.05*0.003 = 0.0005

Qspace = 0.0005*40*(130 - 25) = 1.98 W

The total heat is the sum of them multiplied by the total number of fins,

Qtotal = 250*(24.44 + 1.98) = 6605 W

So, the increase in heat is 6605 - 659.73 = 5945.27 W per meter of tube length.

5 0
3 years ago
By what are isotopes identified?
pashok25 [27]
BBBBBBBB!!!!! ATOMIC MASSES :D
4 0
3 years ago
Please help ASAP!!
inessss [21]

Answer:

at t=46/22, x=24 699/1210 ≈ 24.56m

Explanation:

The general equation for location is:

x(t) = x₀ + v₀·t + 1/2 a·t²

Where:

x(t) is the location at time t. Let's say this is the height above the base of the cliff.

x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0

v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.

a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².

Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.

Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²

Stone: x(t) = 0 + 22·t - 1/2*9.8 t²

Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:

46 = 22·t

so t = 46/22 ≈ 2.09

Put this t back into either original (i.e., with the quadratic term) equation and get:

x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m

4 0
4 years ago
The figure shows a graph of electric potential versus position along the x-axis. A proton is originally at point A, moving along
Lostsunrise [7]
Can we see the figure?
5 0
3 years ago
Other questions:
  • Plants in the desert, such as the yucca tree below, tend to have very wide root structures. Some yucca tree roots have been know
    8·2 answers
  • When would you use a compound microscope?
    9·1 answer
  • Which statement represents a difference between horizontal and vertical relationships?
    5·1 answer
  • Which statement is true?
    15·1 answer
  • On April 26, 1939, Great Britain did this in response to Hitler's aggressive moves?
    11·1 answer
  • What type of reaction is shown below? Ba(OH)2 + 8H20 + 2NH4NO3 + heat ?10H2O + 2NH3 + Ba(NO3)2
    13·2 answers
  • PLEASE I NEED HELP ASAPPPP
    15·2 answers
  • Explain the roles of products, reactants, and limiting reactant in chemical reaction.
    8·1 answer
  • The brightest, hottest, and most massive stars are the brilliant blue stars designated as spectral class O. If a class O star wi
    13·1 answer
  • A object travels at constant negative acceleration. What does the graph of the object's velocity as a fun
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!