The full question is:
On a keyboard, you strike middle C, whose frequency is 256 Hz. What is the period of one vibration of this tone?
The period of a vibration is the time it takes for the particle to make one full oscillation. Frequency is by definition number of full oscillations per unit of time.
When the frequency is expressed in Hz that unit of time is one second.
So there is the following relation between frequency and period:

When we plug in the numbers we get:
Answer:
graph it like thisdo the number it has so do 14
Explanation:
so do 14 and you have it
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.
Answer:
5.43 x 10^-3 Nm
Explanation:
N = 52.5, radius, r = 5.35 cm = 0.0535 m, B = 0.455 T, I = 25.3 mA = 0.0253 A
Torque = N I A B Sin theta
Here, theta = 90 degree
Torque = 52.5 x 0.0253 x 3.14 x 0.0535 x 0.0535 x 0.455
Torque = 5.43 x 10^-3 Nm
Momentum is mass in motion and only applies to objects in motion. It's a term that describes a relationship between the mass and velocity of an object, and we can see this when it is written in equation form, p = mv, where p is momentum, m is mass in kg and v is velocity in m/s.