The velocity is 14 m/s
The parameters given on the question are
mass= 0.060 kg
kinetic energy= 5.9 joules
K.E= 1/2mv²
5.9= 1/2 × 0.060 × v²
5.9= 0.5 × 0.060v²
5.9= 003v²
v²= 5.9/0.03
v²= 196.66
v= √196.66
v= 14 m/s
Hence the velocity of the egg before it strikes the ground is 14 m/s
brainly.com/question/2084569?referrer=searchResults
In a completely inelastic collision, the two objects stick together after the collision.
A. Radiation, conduction
B.
*Radiation will occur between the mug of hot tea and the room
*conduction will occur between the mug of hot tea and the table
C. The table as well as the surrounding air will become warmer.
This is because heat is given off from the mug of hot tea.
Answer:
Approximately
.
Assumption: air resistance on the rocket is negligible. Take
.
Explanation:
By Newton's Second Law of Motion, the acceleration of the rocket is proportional to the net force on it.
.
Note that in this case, the uppercase letter
in the units stands for "mega-", which is the same as
times the unit that follows. For example,
, while
.
Convert the mass of the rocket and the thrust of its engines to SI standard units:
- The standard unit for mass is kilograms:
. - The standard for forces (including thrust) is Newtons:
.
At launch, the velocity of the rocket would be pretty low. Hence, compared to thrust and weight, the air resistance on the rocket would be pretty negligible. The two main forces that contribute to the net force of the rocket would be:
- Thrust (which is supposed to go upwards), and
- Weight (downwards due to gravity.)
The thrust on the rocket is already known to be
. Since the rocket is quite close to the ground, the gravitational acceleration on it should be approximately
. Hence, the weight on the rocket would be approximately
.
The magnitude of the net force on the rocket would be
.
Apply the formula
to find the net force on the rocket. To make sure that the output (acceleration) is in SI units (meters-per-second,) make sure that the inputs (net force and mass) are also in SI units (Newtons for net force and kilograms for mass.)
.