Answer:
The slope of a graph of position vs time
Every action has an equal or opposite reaction.
You weigh 60kg
<span>So your acceleration is 6N / 60 kg = 0.1m/s^2</span>
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Explanation:
The orbit of the planet is considered to be stable and does not change over time. This means that the force of gravity and inertia are perfectly balanced. Leading to forward motion of Planet and moons under force of gravity of some other large body(Most probably stars).This is in turns leads to formation of orbit.
Answer:
A
Explanation:
The figure shows the electric field produced by a spherical charge distribution - this is a radial field, whose strength decreases as the inverse of the square of the distance from the centre of the charge:

More precisely, the strength of the field at a distance r from the centre of the sphere is

where k is the Coulomb's constant and Q is the charge on the sphere.
From the equation, we see that the field strength decreases as we move away from the sphere: therefore, the strength is maximum for the point closest to the sphere, which is point A.
This can also be seen from the density of field lines: in fact, the closer the field lines, the stronger the field. Point A is the point where the lines have highest density, therefore it is also the point where the field is strongest.