Answer:
Landed before it explodes
Explanation:
vf = vi + at,
0 = 145 - (9.8)t,
t = 14.79 s (Time to reach highest point)
14.79 x 2 = 29.59 s (Time to land on the ground)
It will have landed before it explodes because both the time to reach the highest point and the time to land on the ground are less than 32 seconds.
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer:
E
Explanation:
Using Coulomb's law equation
Force of the charge = k qQ /d²
and E = F/ q
substitute for F
E = ( K Qq/ d² ) / q
q cancel q
E = KQ / d²
so twice the distance of the from the point charge will lead to the E ( electric field ) decrease by a 4 = E/4. E is inversely proportional to d²
Disclaimer: I just answered this, here is the answer again!
*Used copy paste from my own answer as it is a repeated question, no copied work*
3. A
The relation between V and I at constant R is;V=IR, so it is a direct linear relation.
4. A
This is another direct linear relation as P=IV.
5. D
The relation between P, R, and V is P=, so P is inversely proportional to R.
6.B
The relation between P,I, and R is , so P is directly proportional to the square of I.
Please note that y:x relations are always straight lines while relations are parabolic lines.
Hope this helps!