Answer:
Solids
Explanation:
The speed of sound is different in different mediums. Among solids, liquids, and gases, sound travels faster through solids. The particles in solids are more closes as compared to liquids and gases.
Answer:
I = 27kg.mi/h
Explanation:
In order to calculate the impulse of the ball, you use the following formula:
(1)
m: mass of the ball = 0.3kg
v: speed of the ball after the bat hit it = 60mi/h
vo: speed of the ball before the bat hit it = 30mi/h
You replace the values of all parameters in the equation (1):

where the minus sign of the initial velocity means that the motion of the ball is opposite to the final direction of such a motion.
The imulpse of the ball is 27 kg.miles/hour
Answer:
The answer will be 936 N.
Explanation:
Given that
m = 80 kg
Acceleration of the elevator , a= 1.7 m/s² ( upward)
The gravity force on the mass = m g
The reading on the scale = F N
Now by applying the Newton's second law
F - m g = ma
F= m g + m a
F= m ( g +a )
F= 80 ( 10 + 1.7 ) N ( take g= 10 m/s²)
F=80 x 11.7 N
F= 936 N
Therefore the reading on the scale will be 936 N.
The answer will be 936 N.
Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.
- The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>
Reasons:
The energy given to the block by the spring = 
According to the principle of conservation of energy, we have;
On a flat plane, energy given to the block =
= kinetic energy of
block = 
Therefore;
0.5·k·x² = 0.5·m·v²
Which gives;
x² ∝ v²
x ∝ v
On a plane inclined at an angle θ, we have;
The energy of the spring = 
- The force of the weight of the block on the string,

The energy given to the block =
= The kinetic energy of block as it leaves the spring = 
Which gives;

Which is of the form;
a·x² - b = c·v²
a·x² + c·v² = b
Where;
a, b, and <em>c</em> are constants
The graph of the equation a·x² + c·v² = b is an ellipse
Therefore;
- As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.
<em>Please find attached a drawing related to the question obtained from a similar question online</em>
<em>The possible question options are;</em>
- <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
- <em>The relationship is no longer linear and v will be more for the same value of x</em>
- <em>The relationship is still linear, with lesser value of v</em>
- <em>The relationship is still linear, with higher value of v</em>
- <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>
<em />
Learn more here:
brainly.com/question/9134528