Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Answer:
12.6 m/s
Explanation:
We know that the linear speed v = rω where r = radius and ω = angular acceleration. Given that ω = 62.8 rad/s and r = 20 cm from center = 0.2 cm
So, v = rω
= 0.2 m × 62.8 rad/s
= 12.56 m/s
≅12.6 m/s
Resistance in wires is transformed into thermal energy, you can observe this fact when you are charging your phone and feel the wire is quite hot. That is a result of the resistance.
Under water turbans that are placed at the above to middle of the ocean they are used to capture kinetic motion