Answer:
A. 4.47 m/s
Explanation:
As the ball oscillates, it mechanical energy, aka the total kinetic and elastics energy stays the same. For the ball to be at maximum speed, its elastic energy i 0 and vice versa. When the ball is at rest, its kinetic energy is 0 and its elastic energy is at maximum at 50 cm, or 0.5 m
1500 g = 1.5 kg






Answer:
When the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
What is specific heat capacity?
Specific heat capacity is the quantity
of heat required to raise a unit mass of
a substance by 1 kelvin.
Specific heat capacity of water and sand
{<em>refer to the above attachment}</em>
Δθ = Q/mc
Thus, for an equal mass of water and sand, when the same amount of heat is added to cold sand and cold water, the temperature change of sand will be higher because of its lower specific heat capacity.
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
10 electrons are in a water molecule. :)
If the bulb is in series with something else, then . . .
-- The brightness of the bulb depends on the <em>other</em> device in the circuit.
-- If the other device is designed to use <em>less power</em> than the bulb, then the
other device gets <em>more power</em> than the bulb gets.
-- If the other device is designed to use <em>more power </em>than the bulb, then the
other device gets <em>less power</em> than the bulb gets.
-- If the other device is removed from the circuit, then the bulb doesn't light at all.
This description of the often-screwy behavior of a series circuit may partly explain
why the electric service in your home is not a series circuit.