1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
11

Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure

ratio of the cycle is 9. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1200 K. Accounting for the variation of specific heats with temperature, determine the minimum mass flow rate of air needed to develop a net power output of 105 MW.

Engineering
1 answer:
iris [78.8K]3 years ago
4 0

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

You might be interested in
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
When were dresses made
klio [65]

Answer:

The world's oldest dress called the Tarkhan Dress is at 5,100 to 5,500 years of age.

Does that help? Or do you need something else? I can change my answer if this is not what you need! :D

Explanation:

6 0
3 years ago
Almost all collisions are due to driver error
blondinia [14]

Answer:

Where's the questaion?

4 0
2 years ago
C++A palindrome is a string such as "madam", "radar", "Dad", and "I", that reads the same forwards and backwards. The empty stri
jeka57 [31]

Answer:

See explaination

Explanation:

#include <iostream>

#include<string.h>

using namespace std;

bool isPalindrome(string str, int lower, int upper){

if(str.length() == 0 || lower>=upper){

return true;

}

else{

if(str.at(lower) == str.at(upper)){

return isPalindrome(str,lower+1,upper-1);

}

else{

return false;

}

}

}

int main(){

string input;

cout<<"Enter string: ";

cin>>input;

if(isPalindrome(input,0,input.length()-1)){

cout<<input<<" is a palindrome"<<endl;

}

else{

cout<<input<<" is NOT a palindrome"<<endl;

}

return 0;

}

5 0
3 years ago
Other questions:
  • Is CO, an air pollutant? How does it differ from other emissions resulting from the combustion of fossil fuels?
    7·1 answer
  • In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False
    12·2 answers
  • 1. Which type of fit implies that a piece will never fit? a. interference fit b. construction fit c. transition fit d. impeding
    8·1 answer
  • he ventilating fan of the bathroom of a building has a volume flow rate of 28 L/s and runs continuously. If the density of air i
    9·1 answer
  • Technician A says that 18 gauge AWG wire can carry more current flow that 12 gauge AWG wire. Technician B says that metric wire
    9·1 answer
  • Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam
    15·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • Why might a hospital patient prefer to interact with a person instead of robot?
    13·1 answer
  • In order to lift a lighter object on the other side, a boy placed 155 N of
    6·1 answer
  • PLS :(((( HELP HELPPPP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!