The unique model production line is responsible for producing identical pieces. For this purpose the balancing of the assembly line is only responsible for assembling a model throughout the line.
This is a considerable difference compared to the mixed model assembly line where many models are assembled during the same production line, that is, it produces parts or products that have slight changes accommodated in them, with slight variations in their model or products of soft variety
The choice of the type of production depends on the type of company and its own demand, always prioritizing the efficiency in the operation. Generally, the mixed model tends to be chosen when demand is very large and customer demand is required to be met. In others it is considered a plant model in which half of the line is mixed and the other one is the only model in order to keep the efficiency balanced.
Answer:
Recognize that there is a moral dilemma.
Determine the actor. ...
Gather the relevant facts. ...
Test for right versus wrong issues. ...
Test for right versus right paradigms. ...
Apply the resolution principles. ...
Investigate the trilemma options. ...
Make the decision.
Answer:
The design process is at the verify phase of Design for Six Sigma
Explanation:
In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed
Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify
Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.
Answer:
minimum factor of safety for fatigue is = 1.5432
Explanation:
given data
AISI 1018 steel cold drawn as table
ultimate strength Sut = 63.800 kpsi
yield strength Syt = 53.700 kpsi
modulus of elasticity E = 29.700 kpsi
we get here
=
...........1
here kb and kt = 1 combined bending and torsion fatigue factor
put here value and we get
=
= 12 kpsi
and
=
...........2
put here value and we get
=
= 17.34 kpsi
now we apply here goodman line equation here that is
...................3
here Se = 0.5 × Sut
Se = 0.5 × 63.800 = 31.9 kspi
put value in equation 3 we get
solve it we get
FOS = 1.5432