Answer:
It has poor tensile strength despite having high compressive strength
Explanation:
Concrete exhibits high compressive strength when used. However, it has very low compressive strength. This is the reason why concrete is normally combined with steel to make a composite building material called reinforced concrete. The steel reinforces concrete hence increasing the tensile strength in RC buildings. The end composite is durable and fireproof. Generally, the main reason why concrete is not use on its own is due to its poor tensile strength.
Answer:
the hurts my brain sorry bud cant help
Explanation:
Answer:
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
Explanation:
Load and Resistance Factor Design
there are 7 basic load combination of LRFD that is
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
and
here load factor for L given ( * ) mean it is permitted = 0.5 for occupancies when live load is less than or equal to 100 psf
here
D is dead load and L is live load
E is earth quake load and S is snow load
W is wind load and R is rain load
Lr is roof live load
Same question idea but different values... I hope I helped you... Don't forget to put a heart mark
Answer: freemasonry is Being a Mason is about a father helping his son make better decisions; a business leader striving to bring morality to the workplace; a thoughtful man learning to work through tough issues in his life.
Explanation: