Answer:
The angle that the wave would be 
Explanation:
From the question we are told that the opening to the harbor acts just like a single-slit so a boat in the harbor that at angle equal to the second diffraction minimum would be safe and the on at angle greater than the diffraction first minimum would be slightly affected
The minimum is as a result of destructive interference
And for single-slit this is mathematically represented as

where D is the slit with
is the angle relative to the original direction of the wave
m is the order of the minimum j
is the wavelength
Now since in the question we are told to obtain the largest angle at which the boat would be safe
And the both is safe at the angle equal to the second minimum then
The the angle is evaluated as
![\theta = sin ^{-1}[\frac{m\lambda}{D} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bm%5Clambda%7D%7BD%7D%20%5D)
Since for second minimum m= 2
The equation becomes

Answer:
dry ice, air fresheners, polar evaporation, arsenic treatment
Search Results
Featured snippet from the web
Work is the force on the object as it changes a distance. Interestingly, as work is done on an object, potential energy can be stored in that object. For example, if you carry a load up the stairs. Now that load will have potential energy that can be transformed into kinetic energy and so on
Answer:
λ = 596 nm.
Explanation:
Fringe width = λ D / d
λ is wave length , D is screen distance and d is slit separation.
Putting the values
1.62 x 10⁻² =( λ x 5.3 ) / .195 x 10⁻³

λ = 596 nm.
Answer:
1500 m/s
Explanation:
Recall that for a wave,
Speed = frequency x wavelength
here we are given frequency = 500 Hz and wavelength = 3m
simply substitute into above equation
Speed = 500 Hz x 3m
= 1500 m/s