Answer:
No, it is not necessary for them to have same mass.
Explanation:
Let both bodies have a density d1 and d2 respectively.
Since their volumes are equal V1 = V2
we know that, https://tex.z-dn.net/?f=%5Cfrac%7Bmass%7D%7Bvolume%7D
Hence, d1 = and d2 =
Taking the ratio of densities,we get
This implies that unless the bodies have same densities, the mass of the two bodies will not be same.
Hi,Find answers from Task 5
1.(X+4)+(X)+(X+4)+(X)=50cm
4x+8=50cm
4x=42
X=10.5cm
Length=10.5+4=14.5cm
Width=10.5cm
Area= length × width=(10.5/100) × (14.5/100) =0.0152m2
2. Volume of a sphere= 4/3 ×π×r³
4/3 ×π×r³=3.2×10^-6 m³
r³=3.2×10^-6 m³/1.33×π
r³=7.64134761e-7
r=0.00914m
Surface area of the blood drop= 4πr²
=4×3.142×0.00914×0.00914=0.00105m²
3.
Equation of an ideal gas = PV =n RT
Equation for pressure, = P= n RT/V
Equation for the volume of an ideal gas= V= n RT/P
If the volume of gas doubles ,V(new)= 2n RT/P
Equation for temperature of an ideal gas, T = PV/n R
If temperature of gas triples, T (new)= 3PV/n R
New Equation for Pressure, = n× R× (3PV/n R)/(2n RT/P)
Pressure factor increase= P(new)/P(old) ={ n× R× (3PV/n R)/(2n RT/P)}/{ n RT/V}
=3PV²/2n RT
Answer:
0.8s
Explanation:
Given parameters:
Height of shelf = 3m
Unknown:
Time it will take to hit the ground = ?
Solution:
To solve this problem, we use the expression below;
x = ut +
gt²
x is the height
u is the initial velocity = 0m/s
g is the acceleration due to gravity = 9.8m/s²
t is the time taken = ?
Now insert the parameters and solve for t;
3 = (0 x t) +(
x 9.8 x t²)
3 = 4.9t²
t² = 0.6
t = 0.8s