Answer:
Terminal speed= 1,826.51m/s
Explanation:
Volume of a sphere is given by: V=4/3pir^3
Where r is radius of sphere
V=4×3.142×(8)^2/3
V= 2144.66cm^3
Converting to meters
V=2144.66cm^3×(1m^3/ 1×10^-6cm^3)
V= 2.145×10^-3m^3
Area of sphereA= pi(8)^2
A= 3.142×64=210.6cm^3
Converting to meter
201cm^×(1m/10000cm^2)
A=0.0210m^2
Given:
Density of shere= 1.00kg/m^3
Drag coefficient =0.500
Mass of sphere=?
Density of sphere= mass of sphere / volume of shere
Mass= 2144.66cm^3×1.00kgcm^3
Mass= 2144.66kg
Terminal speed,VT= Sqrt(2mg)/(DpA)
VT= Sqrt( 2×( 2144.66)×9.8))/(0.500×1.20×0.021)
VT= Sqrt(42035.34/0.0126)
VT=Sqrt(3,336,137.78)
VT= 1,826.51m/s