Answer: option C) II < III < I
i.e [OH−] < [H3O+] < I
Explanation:
First, obtain the pH value of I and II, then compare both with III.
For I
Recall that pH = -log (H+)
So pH3O = -log (H3O+)
= - log (1x10−5)
= 4
For II
pOH = - log(OH-)
= - log(1x10−10)
= 9
For III
pH = 6
Since, pH range from 1 to 14, with values below 7 to be acidic, 7 to be neutral, above 7 to be alkaline: then, 9 < 6 < 4
Thus, the following solutions from least acidic to most acidic is II < III < I
Answer: A) Storing experimental samples
Explanation:
It is a common piece of laboratory glassware that can be made of glass or plastic and is opened at the top and closed at the bottom.
It cannot be used for measurements because there is no graduation indicating the volume.
Althought it can contain extra chemicals left over from an experiment, it is not the main proposal of the glassware that is to store samples.
It cannot be used in a microscope and the object for that is a microscope slide.
Answer:

Explanation:
Hello,
In this case, is possible to infer that the thermal equilibrium is governed by the following relationship:

Thus, both iron's and water's heat capacities are: 0.444 and 4.18 J/g°C respectively, so one solves for the mass of water as shown below:

Best regards.
Answer:
T<span>he gaseous product of this reaction is water (Option-A).
Explanation:
This is a very interesting experiment. Take sugar in a beaker and add concentrated Sulfuric Acid into it. After a while an exothermic reaction will initiate with the formation of Carbon Black and Water vapors. You will observe the formation of hard and hot stem like body which is completely Black. This blackness is due to C and the water vapors will eliminate in the form of steam as the temperature has arised.</span>
There is 6.02*10^23 molecule per mole. And there is 2 atoms per oxygen molecule. So the answer is 1.204*10^24 atoms in 1.0 mole of O2.