Answer:
The new volume of a gas at 750 mmhg and with a volume of 2. 00 l when allowed to change its volume at constant temperature until the pressure is 600 mmhg is 2.5 Liters.
Explanation:
Boyle's law states that the pressure of a given amount of gas is inversely proportional to it's volume at constant temperature. It is written as;
P ∝ V
P V = K
P1 V1 = P2 V2
Parameters :
P1 = Initial pressure of the gas = 750 mmHg
V1 = Initial pressure of the gas = 2. 00 Liters
P2 = Final pressure of the gas = 600 mmHg
V2 = Fimal volume of the gas = ? Liters
Calculations :
V2 = P1 V1 ÷ P2
V2= 750 × 2. 00 ÷ 600
V2 = 1500 ÷ 600
V2 = 2.5 Liters.
Therefore, the new volume of the gas is 2. 5 Liters.
The equation for energy of a photon is E=hv where v equals frequency and h equals the Planck constant (6.626X10^-34). So since you've been given frequency you can just plug in frequency to find the total energy in joules.
E=(3.55X10^17)(6.626X10^-34)
E=2.35223X10^-16
Not sure how many significant figures you needed. Hope this helped.
1) divide each percentage by the relative atomic mass of the element
2) divide all results by the smallest number
3)multiply by a whole number to get the simplest whole number ratio (if necessary)
that is to say:
Na S O
32.37÷23 22.58÷32 45.05÷16
= 1.407 = 0.7056 = 2.816 (to 4 significant figures)
the smallest number here is 0.7056 so:
1.407÷0.7056 0.7056÷0.7056 2.816÷0.7056
=1.99 approx.2 = 1 3.99 approx. 4
here there is no need to carry out step 3 as ratio obtained is already a simplest whole number ratio
so empirical formula is: Na₂SO₄
Answer:
My bad i didnt mean to put that carry on.
Explanation: