<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
We are given that;
1 stadium holds = 1 × 10^5 people
Number of iron atoms is 1 × 10^18 atoms
Assuming the stadium would carry an equivalent number of atoms as people.
Then, 1 stadium will carry 1 × 10^5 atoms
Therefore,
To calculate the number of stadiums that can hold 1 × 10^18 atoms we divide the total number of atoms by the number of atoms per stadium.
Number of stadiums = Total number of atoms ÷ Number of atoms per stadium
= 1 × 10^18 atoms ÷ 1 × 10^5 atoms/stadium
= 1 × 10^13 Stadiums
Thus, 1 × 10^18 atoms would occupy 1 × 10^13 stadiums
Answer:
3) A single specific wavelength
Explanation:
When an electron returns to ground state, it has to emit a single photon.
The molecular formula : As₄S₆
<h3>Further explanation</h3>
Given
Rate of effusion of arsenic(III) sulfide = 0.28 times the rate of effusion of Ar atoms
Required
The molecular formula
Solution
Graham's law: the rate of effusion of a gas is inversely proportional to the square root of its molar masses or
the effusion rates of two gases = the square root of the inverse of their molar masses:

or

Input the value :
1 = Arsenic(III) sulfide
2 = Ar
MM Ar = 40 g/mol
0.28 = √(40/M₁)
M₁=40 : 0.28²
M₁=510 g/mol
The empirical formula of arsenic(III) sulfide = As₂S₃
(Empirical formula)n = molecular formula
( As₂S₃)n = 510 g/mol
(246.02 g/mol)n = 510 g/mol
n = 2
So the molecular formula : As₄S₆
Answer:
its a theory
Explanation:
dealing with the behaviour of matter and light on the atomic and subatomic scale.