1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
4 years ago
14

. In an elastic collision, what happens to the change in kinetic energy? A) It is transformed into heat and also used to deform

colliding objects. B) It is converted into potential energy. C) It is transformed into momentum such that momentum is conserved. D) All of the above. E) None of the above.
Physics
1 answer:
lara31 [8.8K]4 years ago
5 0

Explanation:

There are two types of collision. First one is elastic and other one is inelastic collision.

The linear momentum of two objects before and after the collision remains the same in case of elastic collision. Also, the kinetic energy in elastic collision is conserved. But in case of inelastic collision, the momentum of two objects before and after the collision remains constant but the kinetic energy is in conversed. It changes form one form of energy to another.

Hence, the correct option is (E) "None of the above".

You might be interested in
A) One Strategy in a snowball fight the snowball at a hangover level ground. While your opponent is watching this first snowfall
Alexandra [31]

Answers:

a) \theta_{2}=38\°

b) t=0.495 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=14.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=52\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(14.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(52\°))   (9)

x=19.684 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=75.99\°  

\theta_{2}=37.99\° \approx 38\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(14.1 m/s)sin(52\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.267 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(14.1 m/s)sin(38\°)}{-9.8m/s^{2}}   (18)

t_{2}=1.771 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.267 s - 1.771 s  

Finally:

t=0.495 s  

4 0
4 years ago
A labor push a crate through 12m and 720 J of work .The magnitude of force was
Harrizon [31]

Answer:

<h2>60 N</h2>

Explanation:

The magnitude of the force can be found by using the formula

f =  \frac{w}{d}  \\

w is the workdone

d is the distance

From the question we have

f =  \frac{720}{12}  = 60 \\

We have the final answer as

<h3>60 N</h3>

Hope this helps you

6 0
3 years ago
Studies show that the amount of heat stored in the ocean is increasing. What effect might this have?
g100num [7]
This warming will have an effect on the bicarbonate buffer of the ocean.
4 0
3 years ago
Read 2 more answers
Describe an object’s motion when balanced forces act on it
Alinara [238K]

Balanced forces do not cause a change in motion. When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal
3 0
3 years ago
Read 2 more answers
List the requirements of practical fuel?
rewona [7]

Answer:

Here we have some of the requirement of practical fuel are

1. It must contain large amount of stored energy.  So that more amount of power output available to run the engines, motors etc.    

2.  It must occur in abundance in nature or be easy to produce.  

3. The fuel must be made up of elements that combine easily with oxygen. Foe example if hydrogen molecules reacts with oxygen. Then the products are at the reaction of lower energy than the reactants, the result is the explosive release of energy and the product of water.  


7 0
3 years ago
Other questions:
  • The voltage entering a transformer’s primary winding is 120 volts. The primary winding is wrapped around the iron core 10 times.
    13·2 answers
  • A marble is flicked horizontally off a desk with a speed of 3.1 m/s. If it takes
    14·1 answer
  • HELP :). Explain how soaps lower the surface tension of the fats and oils ?
    5·1 answer
  • A truck is speeding up as it travels on an interstate. The truck's momentum (in kg · m/s) is proportional to the truck's speed (
    8·1 answer
  • To determine the speed of a wave, you would use which of the following formulas? *
    6·2 answers
  • What happens to the acceleration of an object if the net force that acts on it triples in magnitude?
    14·1 answer
  • Mr. Adams asked his students to write the chemical symbol for the element zinc. He wrote the students answers on the white board
    15·1 answer
  • What force is required to accelerate a 1,100 kg car to 0.5 meters squared
    12·1 answer
  • 1. In a certain semiconducting material the charge carriers each have a charge of 1.6 x 10-19 C. How many are entering the semic
    6·1 answer
  • Which instrument fan be used to measure heat​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!