144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
<span>Answer: 8.15s
</span><span />
<span>Explanation:
</span><span />
<span>1) A first order reaction is that whose rate is proportional to the concenration of the reactant:
</span><span />
<span>r = k [N]
</span><span />
<span>r = - d[N]/dt =
</span><span />
<span>=> -d[N]/dt = k [N]
</span><span />
<span>2) When you integrate you get:
</span><span />
<span>N - No = - kt
</span>
<span></span><span /><span>
3) Half life => N = No / 2, t = t'
</span><span />
<span>=> No - No/ 2 = kt' => No /2 = kt' => t' = (No/2) / k
</span><span />
<span>3) Plug in the data given: No = 0.884M, and k = 5.42x10⁻²M/s
</span>
<span /><span /><span>
t' = (0.884M/2) / (5.42x10⁻²M/s) = 8.15s</span>
W*V i believe because it comes down to this :
I is the current, W is wattage V is volts and the * is the thing that represents the Amperes (i’m not 100% but this is my best)
Answer: B
your welcome Bsbssnsnsmsllqql