1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
12

A flat solid disk of radius R and mass M is around vertical axle going through a center of mass of a disk. Suddenly a hoop of ma

ss M and radius R is falling coaxially on the disk. Hoop did not rotate initially. If rotational energy of the system was initially RE, what is rotational energy of the system after hoop has landed?
Physics
1 answer:
Softa [21]3 years ago
4 0

Answer:

Kf = 2/9 RE

Explanation:

The initial mechanical energy of the system is the sum of the kinetic and potential energy of the two bodies as the height does not change we can take the zero in the position of the disk, the ring is still so it has no energy and the energy disk is energy rotation kinetics

      K = ½ m₁ w₁²

In the final position the disc and the ring rotate together, so calluses contribute energy

      Kf = K₁ + K₂ = ½ (m₁ + m₂) w₂²

Where m1 is the mass of the disk, m2 the mass of the ring and w is the initial and final angular velocity

To find the final angular velocity, we treat the case as an inelastic shock, where the kinetic moment (L) is preserved, the system is formed by the two bodies.

       L₀ = Lf

       L₀ = I₁ w₁ + 0

       Lf = (I₁ + I₂) w₂

       I₁ w₁ = (I₁ + I₂) w ₂

       w₂ = I₁ / (I₁ + I₂) w₁

We take the kinetic moments of the bodies

Disk     I₁ = ½ m₁ R₁²

Hoop   I₂ = m₂ R₂²

Let's calculate the final angular velocity

     w₂ = ½ m₁ R² / (1/2 m₁ R² + m₂ R²) w₁

     w₂ = ½ m₁ / (m₁/2 + m₂) w₁

With this value we can substitute and calculate the final kinetic energy

     Kf = ½ (m₁ + m₂) [½ m₁ / (m₁ /2 + m₂) w₁]²  

     Kf = 1/8 [(m₁ + m₂) m₁² / (m₁/2 + m₂)²] w₁²

Let's substitute the values ​​that the mass and radius of the disc and ring give us are the same (M, R)

    Kf = 1/8 [2M M² / (3M/2)²] w₁² = ¼ M³ / (9M² /4) w₁²

    Kf = 1/9 M w₁²

This is the final kinetic energy, let's say it based on the initial (RE)

    Ko = RE = ½ M w₁²

    Kf / Ko = (1/9 M w₁²) / (1/2 M w₁²)

    Kf / RE = 2/9

    Kf = 2/9 RE

This loss of kinetic energy is transformed into internal energy during the crash

You might be interested in
Solve this for me please
Rama09 [41]
Power output = V*I=11000*750=8250 kVA= 8250 kW
8 0
4 years ago
A __________ painted curb designates an area where there is no stopping, parking, loading, or standing.
Vedmedyk [2.9K]
The answer to this question is the red painted curb. The red painted curb means that the vehicle is not suppose to stop and park in the red curb. It also means that people should not stand in that area. Red painted curb also marks as a fire lane for schools.
4 0
4 years ago
A tall cylinder contains 30 cm of water. oil is carefully poured into the cylinder, where it floats on top of the water, until t
Art [367]

The total gauge pressure at the bottom of the cylinder would simply be the sum of the pressure exerted by water and pressure exerted by the oil.

The formula for calculating pressure in a column is:

P = ρ g h

Where,

P = gauge pressure

ρ = density of the liquid

g = gravitational acceleration

h = height of liquid

Adding the two pressures will give the total:

P total = (ρ g h)_water + (ρ g h)_oil

P total = (1000 kg / m^3) (9.8 m / s^2) (0.30 m) + (900 kg / m^3) (9.8 m / s^2) (0.4 - 0.30 m)

P total = 2940 Pa + 882 Pa

P total = 3,822 Pa

 

Answer:

 The total gauge pressure at the bottom is 3,822 Pa.

6 0
3 years ago
Read 2 more answers
Tarzan, in one tree, sights Jane in another tree
taurus [48]
Taking the distance of Tarzan from the ground before and after he makes the swing:

Ho (initial height) = L(1 - cos45) = 20 (1 - 0.707) = 5.86 meters
Hf (final height) = L(1 - cos30) = 20 (1 - 0.866<span>) = 2.68 meters
</span>
Difference in height = 5.86 - 2.68 = 3.18 meters

PE = KE
mgh = (1/2)mv^2

Solving for v:
v = sqrt (2*g*h)
v = sqrt (2*9.8*3.18)
v = 7.89 m/s

With Tarzan going that fast, it is likely that he will knock Jane off.
8 0
3 years ago
Read 2 more answers
2. Earth exerts a gravitational force on the Sun and the Sun exerts a gravitational force on Earth.
kozerog [31]

Answer: Earth exerts a gravitational force on the sun and the sun exerts a gravitational force on Earth

Its not very strong but strong enough to create tides. Compare the gravitational force the sun exerts on earth to the gravitational force earth exerts on the sun. ... Both because they both exert a force on each other the difference is the object with the greater mass being earth will exert a greater force.

Explanation:

3 0
3 years ago
Other questions:
  • Find the x-components of this vector: 92.5 m, 32.0 degrees. Remember, angles are measured from the +x axis.
    7·1 answer
  • Two charged concentric spherical shells have radii 8.83 cm and 15.4 cm. The charge on the inner shell is 5.03 × 10⁻⁸ C and that
    5·1 answer
  • A truck ttaveling with an initial velocity of 60.0m/s comes to a stop in 12.93 secs. What is the accelerationof the truck?
    11·1 answer
  • Which of the following is not part of costa rica’s geography?
    7·2 answers
  • A 65-kg woman in an elevator is accelerating upward at a rate of 0.6 m/s2. The gravitational force is ___ N?
    8·1 answer
  • Why does pumping a soccer ball with an air pump increase the pressure inside the ball? the pump puts more gas particles inside t
    13·2 answers
  • A insect is resting on the rim of a rotating table topper the topper is stopped after covering 125° and 1.3s later. What was the
    15·1 answer
  • The number 0.00325 × 10-8 cm can be expressed in millimeters as A) 3.25 × 10-11 mm. B) 3.25 × 10-10 mm. C) 3.25 × 10-12 mm. D) 3
    10·1 answer
  • A metal blade of length L = 300 cm spins at a constant rate of 17 rad/s about an axis that is perpendicular to the blade and thr
    10·1 answer
  • The speed that a tsunami can travel is modeled by the equation , where s is the speed in kilometers per hour and d is the averag
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!