Answer:
The equation is Fe₂O₃ + CO ⇒ Fe + CO₂.
The balanced reaction equation is Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂.
Explanation:
First, we have to write our equation. It's actually pretty straightforward - first we look for our reactants (looks like it's Fe₂O₃ and CO), then we look for our products (Fe and CO₂). Then, we have to balance it so that both sides have the same number of both element.
Currently, we have the equation Fe₂O₃ + CO ⇒ Fe + CO₂. There are 2 Fe atoms, 4 O atoms, and 1 C atom on the left side. There is 1 Fe atom, 2 O atoms, and 1 C atom on the right side.
First thing we can do is give our Fe on the right side a coefficient of 2. This will make it equivalent to the 2 Fe atoms on the left side:
Fe₂O₃ + CO ⇒ 2Fe + CO₂
Next, we need to make sure that we have the same number of C and O atoms on each side. This takes a little bit of thinking, but what we have to do is give CO a coefficient of 3 and CO₂ a coefficient of 3. This gives us 6 O atoms on the left side (when we include the O₃) and 6 O atoms on the right side (since there are 3 O₂ atoms and 3 times 2 is 6). Here's what that looks like:
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
And that's how I balanced the equation. It can be confusing, but with enough practice, it will get easier and easier. :)
The following reaction gives a product with the molecular formula C₄H₈O₂. The diagram of the structure of the product can be seen in the image attached below.
The reaction between C₂H₂(ONa)₂ and C₂H₄Br results in the formation of the product C₄H₈O₂ and 2NaBr.
This reaction undergoes an SN₂ mechanism since there is no stable carbocation formed. In the reaction -O⁻Na⁺ attacks the ortho position in C₂H₄Br to form C₄H₈O₂.
In SN₂ mechanism is a nucleophilic substitution reaction where one bond is formed while another one is broken simultaneously.
The mechanism for the reaction can be seen in the image attached below.
Learn more about nucleophilic substitution reaction here:
brainly.com/question/4699407?referrer=searchResults
Answer:
7.7439×10⁻³¹ m
Explanation:
The expression for Heisenberg uncertainty principle is:
Where m is the mass of the microscopic particle
h is the Planks constant
Δx is the uncertainty in the position
Δv is the uncertainty in the velocity
Given:
mass = 0.68 g = 0.68×10⁻³ kg
Δv = 0.1 m/s
Δx= ?
Applying the above formula as:
<u>Δx = 7.7439×10⁻³¹ m</u>
I think it is gauche.
I know the angle between two atoms in equatorial positions is 60 degrees. and 60 degrees is seen in gauche conformations.
Have about 5 beakers all with different temperatures of water. Put in a teaspoon of salt at a time and when it stops dissolving stop adding and record how much salt it took. It should be more salt as the temperature rises. The independent variable is the waters temperature. The dependent variable is how much salt is used. Make sure that there is the same amount of water in each beaker. Or else it won’t work.