I think you're fishing for "temporary magnet" or something like that,
but I don't agree with it.
Credit card strips, refrigerator magnets, recording tape, bar magnets,
and big heavy horseshoe magnets are permanent magnets ... you don't
have to keep an electric current circulating around them to make them
magnetic.
But that doesn't mean that they stay magnetic no matter WHAT you do
to them. They can be DEmagnetized by being heated, dropped on the
floor, hit with a hammer, or in the presence of another, stronger magnet.
Answer:
h = 4 in
Explanation:
GIVEN DATA:
volume of tin
we know that
volume of cylinder is 
so,



construct formula for surface area


minimize the function wrt h
solving for h we have
![h = [\frac{4 v}{\pi}]^{1/3}](https://tex.z-dn.net/?f=h%20%3D%20%5B%5Cfrac%7B4%20v%7D%7B%5Cpi%7D%5D%5E%7B1%2F3%7D)
we kow
so
h = 4 in
Answer:3.51
Explanation:
Given
Coefficient of Friction 
Consider a small element at an angle \theta having an angle of 
Normal Force

Friction 

and 







La longitud <em>final</em> del puente de acero es 100.018 metros.
Asumamos que la dilatación <em>térmica</em> experimentada por el puente de acero es <em>pequeña</em>, de modo que podemos emplear la siguiente aproximación <em>lineal</em> para determinar la longitud <em>final</em> del puente de acero (
), en metros:
(1)
Donde:
- Longitud inicial del puente, en metros.
- Coeficiente de dilatación, sin unidad.
- Temperatura inicial, en grados Celsius.
- Temperatura final, en grados Celsius.
Si tenemos que
,
,
y
, entonces la longitud final del puente de acero es:
![L = (100\,m)\cdot [1+(11.5\times 10^{-6})\cdot (24\,^{\circ}C - 8\,^{\circ}C)]](https://tex.z-dn.net/?f=L%20%3D%20%28100%5C%2Cm%29%5Ccdot%20%5B1%2B%2811.5%5Ctimes%2010%5E%7B-6%7D%29%5Ccdot%20%2824%5C%2C%5E%7B%5Ccirc%7DC%20-%208%5C%2C%5E%7B%5Ccirc%7DC%29%5D)

La longitud <em>final</em> del puente de acero es 100.018 metros.
Para aprender más sobre dilatación térmica, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/24953416
The current is defined as the amount of charge Q that passes through a given point of a wire in a time

:

Since I=500 A and the time interval is

the charge is

One electron has a charge of

, therefore the number of electrons that pass a point in the wire during 4 minutes is

electrons