Answer:
D
Explanation:
From the formula of coulombs law F = Kq1q2/square of r, we can say the electric force is indirectly related to square of r
#3). Your drawing in the lower right corner is correct. You're headed down the right road, but ran out of gas and just stopped.
Radius of the circle = 1.5 km
Circumference of the whole circle = (2·π·radius) = 9.42 km
Distance = 3/4 of the way around it = 7.07 km .
Displacement = the straight line from the West point to the North point. The straight-line length is 2.12 km; the straight-line direction from start to finish is Northeast (45°). I'll let you figure out why these numbers.
#4). What if you walk 1 mile East and then 1 mile West ? You got a good workout, and you're back home where you started ! Your distance is 2 miles, and your displacement is zero.
The whale had a good workout too. She swam (6.9 + 1.8 + 3.7) = 12.4 km. She's sweating and tired. Her total distance during that workout is 12.4 km.
Her displacement is the line from start-point to end-point. How she got there doesn't matter, so swimming 1 km East and then swimming 1 km West cancel out, and have no effect on the displacement.
(6.9E + 1.8W + 3.7E) = (10.6 E) + (1.8 W) . . . That adds up to 8.8 East ! That's where she ends up. That's her displacement ... 8.8 km East of where she started. Since we're only talking about displacement, we don't care HOW she got there. She might have been swimming big 20-km circles all day. We don't know. All we know is that she ended up 8.8 km East of where she started.
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer:
The answer to your question is given below
Explanation:
From the question given above, we can see that the wave with a higher frequency has a shorter wavelength while that with a lower frequency has a longer wavelength. This is so because the frequency and wavelength of a wave has inverse relationship. This can further be explained by using the following formula:
Velocity = wavelength x frequency
Divide both side by wavelength
Frequency = Velocity /wavelength
Keeping the velocity constant, we have:
Frequency ∝ 1 / wavelength
From the above illustration, we can see clearly that the frequency and wavelength are in inverse relationship. This implies that the higher the frequency, the shorter the wavelength and the shorter the frequency, the higher the wavelength.
Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s