Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
C) amplitude
Explanation:
"The amplitude is a measure of the strength or intensity of the wave. For example, when looking at a sound wave, the amplitude will measure the loudness of the sound. The energy of the wave also varies in direct proportion to the amplitude of the wave."-Ducksters
The phases of the moon are the changing appearances of the moon, as seen from Earth. Which phase happens immediately after a third quarter moon are the following
Explanation:
- After the full moon (maximum illumination), the light continually decreases. So the waning gibbous phase occurs next. Following the third quarter is the waning crescent, which wanes until the light is completely gone -- a new moon.
waning gibbous phase
- The waning gibbous phase occurs between the full moon and third quarter phases. The last quarter moon (or a half moon) is when half of the lit portion of the Moon is visible after the waning gibbous phase.
Time takes by the moon to go through all the phases
about 29.5 days
- It takes 27 days, 7 hours, and 43 minutes for our Moon to complete one full orbit around Earth. This is called the sidereal month, and is measured by our Moon's position relative to distant “fixed” stars. However, it takes our Moon about 29.5 days to complete one cycle of phases (from new Moon to new Moon).
- At 3rd quarter, the moon rises at midnight and sets at noon. Then we see only a crescent. At new, the moon rises at sunrise and sets at sunset, and we don't see any of the illuminated side!
The inner planets are not colder or larger than the outer ones,
and they're not comprised of gas.
The inner planets are the ones that are made of rock. ( D ).
Explanation:
Below is an attachment containing the solution.