The kinetic energy of an object is directly proportional to its mass and the square of its velocity
KE = 1/2 (mv²)
KE = Kinetic Energy
m = mass in kg
v = velocity in m/s
Given:
m = .8 kg
v = 11.2 m/s
Substitute:
KE = 1/2 (.8)(11.2²)
KE = 50.18 J
Answer:
Explanation:
If the initial velocity is U
Then the horizontal component of the velocity is
Ux= Ucosθ
Then the range for a projectile is give as
R=Ux.t
Where t is the time of flight
The time of flight is given as
t=2USinθ/g
Therefore,
R=Ux.t
R=UCosθ.2USinθ/g
R=U^2×2SinθCosθ/g
Then, from trigonometric ratio
2SinθCosθ= Sin2θ
R=U^2Sin2θ/g
Given that θ=32° and g=9.81m/s^2
Then
R=U^2Sin2×32/9.81
R=U^2Sin64/9.81
R=0.0916U^2
Then, range is given by R=0.0916U^2
A=0.0916U^2.
T
The box is at a distance A from the point of projection. Then the range R=A
R=0.0916U^2
A=0.0916U^2
Then,
U^2=A/0.0916
U^2=10.915A
Then the initial velocity should be
U=√10.915A
U=3.3√A
Answer:
442.36038 m or 1451.31362 ft
Explanation:
= Initial pressure = 30.15 inHg
= Final pressure = 28.607 inHg
= Density of air = 0.075 lb/ft³



Density of mercury = 13560 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Difference in pressure is given by

The height of the building is 442.36038 m or 1451.31362 ft
60 minutes = 1h
500/x = 10/100
She swam 5 kilometers per hour.