Answer:
(C) Mass of KCl(s), mass of H20, initial temperature of the water, and final temperature of the solution
Explanation:
molar enthalpy of solution of KCl(s) is heat evolved or absorbed when one mole of KCl is dissolved in water to make pure solution . The heat evolved or absorbed can be calculated by the following relation.
Q = msΔt where m is mass of solution or water , s is specific heat and Δt is change in temperature of water .
So data required is mass of water or solution , initial and final temperature of solution , specific heat of water is known .
Now to know molar heat , we require mass of solute or KCl dissolved to know heat heat absorbed or evolved by dissolution of one mole of solute .
Answer: 11.5 grams
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution
where,
Morality = 0.612 M
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the mass of copper (II)nitrate required is 11.5 grams
They can be joined through a Peptide bond
The amino acids serve as the foundation for proteins. Water is produced when the amino acids are linked to form a lengthy chain of acids via amino and carboxyl. The main protein is made up of these long chain amino acids.
When the carboxyl group of one molecule combines with the amino group of the other molecule, a molecule of water is released, and a peptide bond is created between the two molecules (H2O). This condensation event, sometimes referred to as a dehydration synthesis reaction, typically takes place between amino acids.
<h3>What is a Peptide bond ?</h3>
The carboxyl group of one amino acid is joined to the amino group of another to produce a peptide bond, also known as a eupeptide bond. In essence, a peptide link is an amide-type covalent chemical bond.
Learn more about Peptide bond here:
brainly.com/question/11559138
#SPJ4
Answer:
6.4 × 10^-10 M
Explanation:
The molar solubility of the ions in a compound can be calculated from the Ksp (solubility constant).
CaF2 will dissociate as follows:
CaF2 ⇌Ca2+ + 2F-
1 mole of Calcium ion (x)
2 moles of fluorine ion (2x)
NaF will also dissociate as follows:
NaF ⇌ Na+ + F-
Where Na+ = 0.25M
F- = 0.25M
The total concentration of fluoride ion in the solution is (2x + 0.25M), however, due to common ion effect i.e. 2x<0.25, 2x can be neglected. This means that concentration of fluoride ion will be 0.25M
Ksp = {Ca2+}{F-}^2
Ksp = {x}{0.25}^2
4.0 × 10^-11 = 0.25^2 × x
4.0 × 10^-11 = 0.0625x
x = 4.0 × 10^-11 ÷ 6.25 × 10^-2
x = 4/6.25 × 10^ (-11+2)
x = 0.64 × 10^-9
x = 6.4 × 10^-10
Therefore, the molar solubility of CaF2 in NaF solution is 6.4 × 10^-10M
I remember learning this last y’all i jus don’t remember it might be A or C