Answer:
The force will be 54.0 units
Explanation:
The magnitude of the electrostatic force between two charged objects is given by Coulomb's Law:

where
k is Coulomb's constant
q1, q2 are the magnitude of the two charges
r is the separation between the two charges
From the equation, we see that the magnitude of the force is directly proportional to the charge of object 2:

In this problem, the initial force between the two objects is
F = 18.0 N
And so, when the charge on object 2 is tripled,

The new electrostatic force will be

So, the force will also triple: since the original force was 18.0 units, the new force will be

The awnser is. 1728000 kilometers
The answer is b/ cope a small section word-for-word
The given question is incomplete. The complete question is as follows.
Measurements show that the enthalpy of a mixture of gaseous reactants decreases by 338 kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that 187 kJ of work is done on the mixture during the reaction. Calculate the change in energy of the gas mixture during the reaction. Be sure your answer has the correct number of significant digits. Is the reaction exothermic or endothermic ?
Explanation:
The given data is as follows.
Change in enthalpy (
) = -338 kJ (as it is a decrease)
Work done = 187 kJ,
Change in energy (
) = ?
Now, according to the first law of thermodynamics the formula is as follows.

Hence, putting the given values into the above formula as follows.

Also, we know that W = 
so,

= -151 kJ
Thus, we can conclude that the change in energy of the gas mixture during the reaction is -151 kJ.