Answer:
Isotopes have same atomic numbers, no. of protons and no. of electrons. Only their no. of neutrons and atomic mass are changed.
<u>Na - 24:</u>
Atomic Mass = 24
Atomic No. = 11
Hence,
No. of protons in Na-24 = 11
No. of neutrons = Atomic Mass - Atomic Number
No. of neutrons = 24 - 11
No. of neutrons = 13
Atomic Number = 11
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
Answer:
Most of these rocks are not made up of common geometric shapes
Explanation:
Because most rocks are not made up of common geometric shapes, it would be difficult or impossible to find the volume of a rock using a ruler; there would be no easy way to measure the rock's volume using a ruler
Hope this helped!
Answer:
Heat is the total energy of molecular motion in a substance while temperature is a measure of the average energy of molecular motion in a substance. Heat energy depends on the speed of the particles, the number of particles (the size or mass), and the type of particles in an object. Temperature does not depend on the size or type of object. For example, the temperature of a small cup of water might be the same as the temperature of a large tub of water, but the tub of water has more heat because it has more water and thus more total thermal energy. It is heat that will increase or decrease the temperature. If we add heat, the temperature will become higher. If we remove heat the temperature will become lower. Higher temperatures mean that the molecules are moving, vibrating and rotating with more energy. If we take two objects which have the same temperature and bring them into contact, there will be no overall transfer of energy between them because the average energies of the particles in each object are the same. But if the temperature of one object is higher than that of the other object, there will be a transfer of energy from the hotter to the colder object until both objects reach the same temperature.
Temperature is not energy, but a measure of it. Heat is energy.
Hope I helped :)
Answer:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster (less dissolved CO2 in pop). If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat
Explanation:
If the cap is left off, some of the dissolved CO2 can escape as gas from the bottle, making the pop go flat faster. If the cap is placed tightly, the gaseous CO2 cannot readily escape the bottle thus your pop won't go flat.
Just some fun related concept:
A similar concept comes into play for the reason behind why pop tastes better in fridge then just keeping at normal temperature. This is because gases tend to have high solubility at cold temperatures thus CO2 is more readily dissolved in fridge than outside room temperature which is why it tastes great!