Answer:
Divide the mass of your anhydrous (heated) salt sample by the molar mass of the anhydrous compound to get the number of moles of compound present. In our example, 16 grams / 160 grams per mole = 0.1 moles. Divide the mass of water lost when you heated the salt by the molar mass of water, roughly 18 grams per mole.In order to determine the formula of the hydrate, [Anhydrous Solid⋅xH2O], the number of moles of water per mole of anhydrous solid (x) will be calculated by dividing the number of moles of water by the number of moles of the anhydrous solid (Equation 2.12. 6).
Answer:

Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
![K=\frac{[NO_2]^2}{[NO]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BNO%5D%5E2%5BO_2%5D%7D)
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:

In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!
Rusting causes rocks with metals in them to corrode and have changed compositions. The oxygen in the moisture in the air causes rock to rust.
Oil consists of many B. Covalent bonds between the nonmetals of Carbon, hydrogen and oxygen.
Pulled apart (moved with the magnetic force)