Hydrogen H 1.797%
Oxygen O 28.517%
Potassium K 69.687%
Answer:
Sometimes it is not an increase in force that is desired, but an increase in
distance or speed. Take a baseball bat as an example. A bat is a class 3
lever, meaning the effort is in the middle. This means that it has a
mechanical advantage of less than one. However, when the bat is swung,
the end of the bat is travelling at a much higher speed than the location at
which the batter is holding it. This allows the ball to leave the bat at a
much higher speed than it would with a class one or two lever.
Explanation:
First, we need the balanced equation: H₂ + Cl₂ ---> 2HCl
since not much information is given, I am assuming we are at STP and that 22.4 Liters= 1 mol
1) let's convert the volume to moles using the molar volume of a gas. also we need to convert the cm₃ to mL, then to Liters.
8 cm³ (1 ml/ 1 cm³)(1 L/ 1000 mL) (1 mol/ 22.4 Liters)= 3.6x10⁻⁴ moles of H₂
2) let's use the mole ratio of the balanced equation to convert moles of H₂ to moles of HCl
3.6x10⁻⁴ mol H₂ (2 mol HCl/ 1 mol H₂)= 7.1x10⁻⁴ mol HCl
3) lastly, we convert the moles of HCl to grams using the molar mass.
molar mass of HCl= 1.01 + 35.5= 36.51 g/mol
7.1x10⁻⁴ mol HCl (36.51 g/mol)=<span> 0.026 grams HCl</span>
<h3>Answer:</h3>
100 g O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 2 mol CH₄
[Solve] x g O₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CH₄ → 2 mol O₂
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of O₂ - 2(16.00) = 32.00 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
128 g O₂ ≈ 100 g O₂