<h2>Answer : Option B) Hydrogen</h2><h3>Explanation :</h3>
All fossil fuels contains hydrocarbons in it. Amongst the given options hydrogen is the correct answer. Except that it contains carbon in it. Hydrocarbons are those class of compounds which contains hydrogen and carbon as element in it.
They are considered to be good fuels because they naturally bring out complete combustion as they contain hydrogen and carbon in its compound form.
Answer:
The mole fraction of ethanol is 0.6. A 10 mL volumetric pipette must be used for to measure the 10 mL of ethanol. The vessel should be clean and purged.
Explanation:
For calculating mole fraction of ethanol, the amount of moles ethanol must be calculated. Using ethanol density (0.778 g/mL), 10 mL of ethanol equals to 7.89 g of ethanol and in turn 0.17 moles of ethanol. The same way for calculate the amount of water moles (ethanol density=0.997 g/mL). 2 mL of water correspond to 0.11. The total moles are: 0.17+0.11=0.28. Mole fraction alcohol is: 0.17/0.28=0.6
The answer to this question is 159.609 g/mol
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
Answer:
They mostly dissolve in water, and they are poor conductors of heat.