A. High energy radiation produced in the ozone layer. (:
<h3>
Answer: b) 0.250 mol</h3>
============================================
Work Shown:
Using the periodic table, we see that
- 1 mole of carbon = 12 grams
- 1 mole of oxygen = 16 grams
These are approximations and these values are often found underneath the atomic symbol. For example, the atomic weight listed under carbon is roughly 12.011 grams. I'm rounding to 2 sig figs in those numbers listed above.
So 1 mole of CO2 is approximately 12+2*16 = 44 grams. The 2 is there since we have 2 oxygens attached to the carbon atom.
-------------------
Since 1 mole of CO2 is 44 grams, we can use that to convert from grams to moles.
11.0 grams of CO2 = (11.0 grams)*(1 mol/44 g) = (11.0/44) mol = 0.250 mol of CO2
In short,
11.0 grams of CO2 = 0.250 mol of CO2
This is approximate.
We don't need to use any of the information in the table.
This problem is providing the length in inches of a rod and it is being required to convert it to centimeters. According to the following, the answer will be 43.7 cm:
<h3>Units conversion:</h3><h3 />
In science, we use units conversion to represent measurements in different types of units depending on a specific requirement. To do so, we use conversion factors based on equivalence statements, relating the required unit with the given one.
In this case, the equivalence statement between inches and centimeters is 2.54 cm = 1 in and we can use it to get the answer as shown below:

Learn more about units conversion: brainly.com/question/13016491
Answer: Concentration of the chemist's sodium chloride solution is 34.4 mol/L.
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
n= moles of solute
= volume of solution in ml
Given : moles of
= 6.89
volume of solution = 200 ml
Putting in the values we get:

Thus the concentration of the chemist's sodium chloride solution is 34.4 mol/L.
<h3>
Answer:</h3>
5.6 L
<h3>
Explanation:</h3>
We are given;
- Initial volume, V1 = 3.5 L
- Initial pressure, P1 = 0.8 atm
- Final pressure, P2 = 0.5 atm
We are required to calculate the final volume;
- According to Boyle's law, the volume of a fixed mass of a gas and the pressure are inversely proportional at a constant temperature.
- That is; P α 1/V
- Mathematically, P=k/V
- At two different pressure and volume;
P1V1 = P2V2
In this case;
Rearranging the formula;
V2 = P1V1 ÷ P2
= (0.8 atm × 3.5 L) ÷ 0.5 atm
= 5.6 L
Therefore, the resulting volume is 5.6 L