Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
Answer;
-Physical model
A physical representation of a real object, such as a globe of the world, is a physical model.
Explanation;
-A physical model is a simplified material representation, usually on a reduced scale, of an object or phenomenon that needs to investigated.
-The model can be used to simulate the physical conditions involved (temperature, waves, speed etc.) and to predict the particular constraints of the situation.
Answer:
did it have more than one phase
Explanation:
this will be my question
In the centripetal movement, what happens with velocity is that it will remain constant, always pointing in its tangential direction of the trajectory. Said speed, although constant, will have a constant direction that will generate an acceleration that will always point towards the center of the circle radius. Both vectors as the turn is performed will always be perpendicular to each other.