Mass is always conserved in a physical change. Energy may be released or absorbed when a substance changes from one physical state to another. In a chemical change, a chemical reaction yields a completely new substance. A substance's particles are changed during a chemical reaction.
Answer:
(a) Two electrochemical half reactions for ethanol
is written below
⇒ 
⇒

(b) The direct oxidation of the fuel will occur in a solid oxide fuel cell but we have to compete with other sets of chemical electrochemical reaction such as water-gas-shift reaction
⇆ 
(c) The electrochemical half reaction that could convert ethanol directly into a fuel cell that conducts hydrogen ions is shown below
⇒ 

⇒ 
(d) The half reactions that would be required are shown below
⇒ 
⇒ 
⇒ 
Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>
Answer:
I Believe it is 4 orbitals s,p,p,p or aka sp^3
Explanation: