Answer:
14 moles of oxygen needed to produce 12 moles of H2O.
Explanation:
We are given that balance eqaution

We have to find number of moles of O2 needed to produce 12 moles of H2O.
From given equation
We can see that
6 moles of H2O produced by Oxygen =7 moles
1 mole of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=14 moles
Hence, 14 moles of oxygen needed to produce 12 moles of H2O.
The Earth's rotation has no relation to the phases of the moon.
Like everything else in the sky, the moon rises in the east just like the stars, planets, and the sun.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
1) The trails left by an electron as it moves around the nucleus
The electron model dictates that the electrons have no fixed position so it traces their path.
2) 8
Atomic number is equivalent to proton number
3) Its mass is lowered, but it is still the same element.
The element's identity is due to the number of protons; however, neutrons play a large role in an atom's mass. Thus, the mass will decrease but the element will be the same. Such variants are called isotopes.