Answer:
The correct answer is - Plantae.
Explanation:
Drosera m<em>agnifica</em> is discovered in 2015 for the first time and the characteristics this organism's cell shows are -
- permanent vacuoles
- surrounded by cellulose layer
Vacuoles are present in both Plantae and Animalia kingdom of the eukaryotic organism but in animal cells, there are small and numerous vacuoles present and they are not permanent whereas in plant cells vacuoles are present permanently.
The cell of an animal cell has no surrounding layer other than cell membrane while in the plant cell there is a supporting and protecting layer of cellulose cell wall present.
On the basis of the given characteristics, it is confirmed that the Drosera magnifica belongs to Plantae kingdom.
Spiral galaxies are still undergoing star formation
Based on the mass per unit length and the tension, the speed that the wave travels on this string is 519.615 m/s.
<h3>What is the speed?</h3><h3 />
The speed that the wave travels can be found as:
Velocity² = Tension / Mass per length
Solving gives:
Velocity² = 1,350 / 0.005
Velocity² = 270,000
Velocity = √270,000
= 519.615 m/s
Find out more on the speed of a wave at brainly.com/question/12215474
#SPJ4
If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

Where | A | is the magnitude of the vector and
is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle
.
Vector A is in the 4th quadrant
So:

So:

So:

= -47.28 ° +360° = 313 °
= 313 °
Option 4.
Explanation:
They probably put "rolls without slipping" in there to indicate that there is no loss in friction; or that the friction is constant throughout the movement of the disk. So it's more of a contingency part of the explanation of the problem.
(Remember how earlier on in Physics lessons, we see "ignore friction" written into problems; it just removes the "What about [ ]?" question for anyone who might ask.)
In this case, you can't ignore friction because the disk wouldn't roll without it.
As far as friction producing a torque... I would say that friction is a result of the torque in this case. And because the point of contact is, presumably, the ground, the friction is tangential to the disk. Meaning the friction is linear and has no angular component.
(You could probably argue that by Newton's 3rd Law there should be some opposing torque, but I think that's outside of the scope of this problem.)
Hopefully this helps clear up the misunderstanding for you.