W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
A material that can easily flow is called a...
A. Fluid.
Answer:
4.5 metres
Explanation:
Using Hooke's Law (
)
We need to find the spring constant of the bungee cord with the given extension and force, we can do this by substituting in known values.

Now we have found the spring constant of the bungee cord, we can substitute it in for the a different force. As the cord is the same we can use the same spring constant.

It doesn't the sun stays still we move around the sun
Answer: q = 2.781e-9C = 2.781nC
E=200C
Explanation:
E = Qd/(2πEor^3)
Where
E=Electric field intensity
Q=Charge
d=distance between the dipole=0.008m
Eo=permitivitty
400 N/C = Q(0.80e-2 m)/(2πε*(10e-2 m)^3)
Q= (400* 2* 3.142 * 8.85 x 10-12 * 0.1^3)/0.008
q = 2.781e-9C = 2.781nC
b)
Though the dipole are two separate charges. And since the point is on the x-axis, the electric field strengths are equivalent. The magnitude of the vector sum is:
E = kq*2sin θ/r^2
= 2(8.99e9 N*m^2/C^2)(2.781e-9 C)*sin(arctan(.4/10))/(10e-2 m)^2
= 2(8.99e9) * (2.781e-9) * sin(2.290)/(10e-2 m)^2
=200 C