Answer:
The correct answer is option 'c': Smaller stone rebounds while as larger stone remains stationary.
Explanation:
Let the velocity and the mass of the smaller stone be 'm' and 'v' respectively
and the mass of big rock be 'M'
Initial momentum of the system equals

Now let after the collision the small stone move with a velocity v' and the big roch move with a velocity V'
Thus the final momentum of the system is

Equating initial and the final momenta we get

Now since the surface is frictionless thus the energy is also conserved thus

Similarly the final energy becomes
\
Equating initial and final energies we get

Solving i and ii we get

Using this in equation i we get
Thus putting v = -v' in equation i we get V' = 0
This implies Smaller stone rebounds while as larger stone remains stationary.
The correct answer is B. <span>0.002010812m3. Good Luck! :)</span>
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>