1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
2 years ago
7

If a vector that is 3cm long represents 30 km/h, what velocity does a 5 cm long vector which is drawn using the same scale repre

sent?
A.50 km/h
B. 60 km/h
C. 100 km/h
Physics
1 answer:
poizon [28]2 years ago
5 0

Answer: A. 50 km/h

Explanation:

3 * 10 = 30

5 * 10 = 50

You might be interested in
I have a combination of myopia and presbyopia—overall, the power of my visual system is too large, but I also have a very limite
e-lub [12.9K]

Answer:

The range of powers is    - 5 \ D \le P \le - 2.667\  D

Explanation:

From the question we are told that

       The far point of the left eye is n_f = 20 cm

       The near point of the left eye is  n =  15cm

       The near point with the glasses on is n_g =25 \ cm

     

From these parameter we can see that with the glass on that for near point the

         Object distance would be u = -25 \ cm

          Image distance would be  v =  -15 \ cm

To obtain the focal length we would apply the lens formula which is mathematically represented as

              \frac{1}{f} =  \frac{1}{v}  -  \frac{1}{u}

substituting values

              \frac{1}{f} =  \frac{1}{-15}  -  \frac{1}{-25}

               f =  - \frac{75}{2} cm

           converting to  meters

               f =  - \frac{75}{2} * \frac{1}{100}

               f =  - \frac{75}{200} \ m

   Generally the power of the lens is mathematically represented as

                P  = \frac{1}{f}

Substituting values

                 P = -  \frac{200}{75}  m

                 P = - 2.667 \ D

   

From these parameter we can see that with the glass on that for far  point the

         Object distance would be u_f = - \infty \ cm

          Image distance would be  v_f =  -20  \ cm

To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

                    \frac{1}{f_f} =  \frac{1}{v_f}  -  \frac{1}{u_f}

substituting values

                  \frac{1}{f} =  \frac{1}{-20}  -  \frac{1}{- \infty}

                 \frac{1}{f} =  \frac{1}{-20}  -  0      

                  f_f =  \frac{20}{1}  \ cm

converting to  meters

                f_f =  - \frac{20}{1}  * \frac{1}{100}

               

Generally the power of the lens is mathematically represented as

                P  = \frac{1}{f_f}

Substituting values

                 P = -  \frac{100}{20}  m

                 P = - 5 \ D

This implies that the range of powers of the lens in his glass is

                  - 5 \ D \le P \le - 2.667\  D

   

               

               

           

3 0
3 years ago
How can you prove the mechanical nature of sound by a simple experiment
Kruka [31]

Answer:

That is, mechanical waves cannot travel through a vacuum. This feature of mechanical waves is often demonstrated in a Physics class. A ringing bell is placed in a jar and air inside the jar is evacuated. Once air is removed from the jar, the sound of the ringing bell can no longer be heard.

6 0
3 years ago
A 1.80-m string of weight 0.0126 N is tied to the ceiling at its upper end, and the lower end supports a weight W. Neglect the v
Veseljchak [2.6K]

Answer:

W = 0.135 N

Explanation:

Given:

- y (x, t) = 8.50*cos(172*x -2730*t)

- Weight of string m*g = 0.0126 N

- Attached weight = W

Find:

The attached weight W given that Tension and W are equal.

Solution:

The general form of standing mechanical waves is given by:

                            y (x, t) = A*cos(k*x -w*t)  

Where k = stiffness and w = angular frequency

Hence,

                           k = 172 and w = 2730

- Calculate wave speed V:

                            V = w / k = 2730 / 172 = 13.78 m/s

- Tension in the string T:

                            T = Y*V^2

where Y: is the mass per unit length of the string.

- The tension T and weight attached W are equal:

                           T = W = Y*V^2 = (w/L*g)*V^2

                            W = (0.0126 / 1.8*9.81)*(13.78)^2

                            W = 0.135 N

4 0
3 years ago
Question 1
Step2247 [10]
1.<span> B. Turpentine
2. </span><span>C. Move on to another forested area.
3. </span><span>A. Starting a tree plantation
4. D. </span><span>Clear-cutting
</span>5. C. <span>Controlled burning</span>
7 0
3 years ago
Read 2 more answers
What is the total number of pounds of carbon dioxide that 2 trees remove from the air each<br> year?
Vikentia [17]

Answer:

On average, one acre of new forest can sequester about 2.5 tons of carbon annually. Young trees absorb CO2 at a rate of 13 pounds per tree each year. Trees reach their most productive stage of carbon storage at about 10 years at which point they are estimated to absorb 48 pounds of CO2 per year.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Write 3.5 seconds as milliseconds
    5·2 answers
  • Which best describes longitudinal waves?
    13·2 answers
  • The theory of biological evolution is generally accepted by the modern scientific community as true: True or False?
    11·1 answer
  • A 2 kg soccer ball is traveling 28.62m/s when it hits the wall and bounces off of the wall with a velocity of 20 m/s. If the wal
    9·1 answer
  • An object is placed a distance of twice the focal length away from a diverging lens. What is the magnification of the image?
    12·1 answer
  • You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
    8·1 answer
  • Why does the gravitational force between earth and moon predominate over electrical forces?
    10·1 answer
  • HURRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·2 answers
  • Cuestionario:
    8·1 answer
  • Which type of energy resource can be replaced in a short amount of time? 15 Points
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!