I am going to say C. it has to do with the angles
Answer:
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Explanation:
Hello!
In this case, since the molarity of a solution is defined in terms of the moles of the solute and the volume of solution, given that the concentration of Cu(NH₃)₄²⁺ is 0.041 M, and there is only one copper atom per Cu(NH₃)₄²⁺ ion, we can compute the concentration of Cu²⁺ as shown below:
![[Cu^{2+}]=0.041\frac{molCu(NH_3)_4^{2+}}{L}*\frac{1molCu^{2+}}{1molCu(NH_3)_4^{2+}} =0.041 \frac{molCu(NH_3)_4^{2+}}{L}](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B1molCu%5E%7B2%2B%7D%7D%7B1molCu%28NH_3%29_4%5E%7B2%2B%7D%7D%20%3D0.041%20%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D)
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Best regards!
1st energy level can hold 2 electrons
2nd energy level can hold 8 electrons
3rd energy level can hold 8 or 18 electrons
I think the most appropriate answer is: the solvent being used in the experiment
<span>To correct for any light absorption not originating from the solute you will need to calibrate the tools with a solution that most similar to the sample.
Blank covete or standard solution can be used, but it was not ideal. By using the solvent as calibration, you can remove the reading from the solvent so your result only comes from the sample.
</span>