From the ideal gas law, PV = nRT, we can rearrange the equation to solve for T given the other parameters.
T = PV/nR
where P = 0.878 atm, V = 1.20 L, n = 0.0470 moles, and R = 0.082057 L•atm/mol•K. Plugging in our values, we obtain the temperature in Kelvin:
T = (0.878 atm)(1.20 L)/(0.0470 mol)(0.082057 L•atm/mol•K)
T = 273 K
So, the second answer choice would be correct.
Chemical change occur when two substances are combined and produces a new substance or decomposes into two or more substances which are entirely different from the original two substances.
There are three types of chemical changes. These are 1) Inorganic Changes, 2) Organic Changes, and 3) Biochemical Changes
Here are some examples of chemicsal changes.
If you combine Sodium and Water, chemical changes causes decomposition into Sodium Hydroxide and Hydrogen.
Sodium + Water ==> Sodium Hydroxide and Hydrogen
Na + H2O ====> NaOH and H
Another example of chemical change is:
Carbon Dioxide and Water will decompose into Sugar and Oxygen
Carbon Dioxide + Water ==> Sugar and Oxygen
CO2 + H2O ==> CnH2nOn (where n is between 3 and 7) and O
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature