<u>Answer:</u> The correct answer is Option 2.
<u>Explanation:</u>
Centripetal force is defined as the force that acts on a body moving in a circular path and is directed towards the center around which the body is moving.
Mathematically,

Where,
= centripetal force
m = mass of the object
v = tangential velocity
r = radius of the path
From the above relation, X corresponds to the radius and Y corresponds to the tangential velocity.
Hence, the correct answer is option C.
Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C
Answer:
The u (amu is the old unit name) is 1/12 of the weight of an 12C atom. The way the u is chosen ensures that all core and atom masses are multiples of 1(±0.1) u.
Explanation:
Further explanation if needed...
Carbon 12 was chosen because the chemical atomic weights based on C12 are almost identical to the chemical atomic weights based on the natural mix of oxygen. Simply because the atomic mass is defined as 1/12 of the mass of 12C. Others isotopes of carbon (13C mostly, with an abundance of 1.1% approximately) account for an average atomic mass slightly above 12.
Moles of CO2 = number of molecules / 6.02x10^23. = 3x10^23/6.02x10^23 = 0.5moles. Therefore, mass of CO2 = moles x molecular mass of CO2= 0.5x44 = 22gm.