The answer is b because the sun's surface temperature is 5,778 K.
Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Answer:
15 cm
Explanation:
= Diameter of the coin = 15 mm
= Diameter of the image of coin = 5 mm
= distance of the coin from mirror = 15 cm
= distance of the image of coin from mirror = ?
Using the equation


= - 5 cm
= radius of curvature
Using the mirror equation


= - 15 cm
The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
The wave speed completely depends on the characteristics and properties of the medium . . . physical properties for mechanical waves, electrical properties for electromagnedtic waves.
So if you want to change the speed of a wave, you have to change the medium . . . shoot it through some different kind of stuff. <em>(B) </em>