Answer:
The capacite is C=5.32 uF using the equations of voltage and energy in capacitance
Explanation:
The energy holds is 5 J and the resistor dissipates 2J so the energy total is 3J
Using:
Voltage in this case is the energy dissipated so
Using the equation to find capacitance
F
C= 5.32 uF because u is the symbol for micro that is equal to
Donald trump is 74 years old
Answer:
= 391.67 Hz
Explanation:
The sound of lowest frequency which is produced by a vibrating sting is called its fundamental frequency ().
The For a vibrating string, the fundamental frequency () can be determined by:
=
Where v is the speed of waves of the string, and L is the length of the string.
L = 42.0 cm = 0.42 m
v = 329 m/s
=
=
= 391.6667 Hz
The fundamental frequency of the string is 391.67 Hz.
Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance